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Log-linear models are used to determine whether
there are any significant relationships in multiway
contingency tables that have three or more categorical
variables and/or to determine if the distribution of
the counts among the cells of a table can be explained
by a simpler, underlying structure (restricted model).
The saturated model contains all the variables being
analysed and all possible interactions between the
variables.

Let us use a simple 2X2 cross-tabulation (over-eating
versus over-weight, Table Ia) to illustrate the log-linear
model analysis. Table Ib shows the SPSS data structure
and their association could easily be assessed using
the chi-square test(1) (test of independence). Table Ic
shows that there is no association (phew!), p=0.065
and Table Id shows the corresponding risk estimates.

Table Ia. Over-eating x over-weight.

Over-eating * over-weight cross-tabulation

Over-weight

Yes No Total

Over-eating Yes Count 58 41 99

% within 55.8% 42.7% 49.5%
over-weight

No Count 46 55 101

% within 44.2% 57.3% 50.5%
over-weight

Total Count 104 96 200

% within 100.0% 100.0% 100.0%
over-weight

Table Ib. SPSS data structure for over-eating x over-weight.

Over-eating Over-weight Count

Yes Yes 58

Yes No 41

No Yes 46

No No 55

Coding Yes = 1 & No = 2.

Table Ic. Chi-square test.

Chi-square tests

Value df Asymp Exact Exact
sig. sig. sig.

(2-sided) (2-sided) (1-sided)

Pearson chi-square 3.407b 1 .065

Continuity correctiona 2.904 1 .088

Likelihood ratio 3.417 1 .065

Fisher’s exact test .068 .044

Linear-by-linear 3.390 1 .066
association

No. of valid cases 200

a. Computed only for a 2x2 table.

b. 0 cells (.0%) have expected count less than 5. The minimum
expected count is 47.52.

Table Id. Risk estimate table.

Risk estimate

95% confidence interval

Value Lower Upper

Odds ratio for 1.691 .966 2.960
over-eating (yes/no)

For cohort over-weight 1.286 .982 1.685
= yes

For cohort over-weight .761 .567 1.021
= no

No. of valid cases 200

We shall use the log-linear model analysis for the
above 2X2 table.

Before running the analysis for the log-linear
model, we have to “weight cases” using the variable
Count first. Go to Data, Weight Cases to get
Template I. Check on the “Weight cases by” and input
“Count” to the Frequency Variable option.
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Template I. Declaring “count” as the “Weight cases by”.

Go to Analyze, Loglinear, General to get
Template II. Put Over-weight and Over-eating into
the Factors option (a maximum of 10 categorical
variables could be included).

Template II. Declaring only categorical variables.

Leave the “Distribution of Cell Counts” as
Poisson, then click on the Model folder, and see
Template III. The Saturated model gives all possible
interactions between the categorical variables. In this
case, the model will be Over-weight + Over-eating +
Over-eating X Over-weight.

Template III. Defining the saturated model.

Click on the Options folder in Template II to get
Template IV.

Template IV. Display options.

Check the Estimates box.

The following options are available in the Saved
folder (Template V). Leave them unchecked.

Template V. Save options.

The model information and goodness-of-fit
statistics will be automatically displayed.

SPSS output – Saturated Model (only relevant
tables shown)

Table II shows the goodness-of-fit test,
which will always result in a chi-square value of 0
because the saturated model will fully explain all the
relationships among the variables.

Table II. Goodness-of-fit test.

Goodness-of-fit testsa,b

Value df Sig.

Likelihood ratio .000 0 .

Pearson chi-square .000 0 .

a. Model: Poisson.
b. Design: Constant + over_weight + over_eating + over_weight*

over_eating.
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Table III shows the parameter estimates of the
saturated model. Taking the exponential (exp) of the
estimate gives the odds ratio. We are particularly
interested in the interaction term [over_weight = 1.00]
* [over_eating = 1.00] which assesses the association
between the 2 variables. This interaction’s estimate
is 0.525 and exp (0.525) = 1.691 with a p-value of
0.067 – which is exactly the same results obtained
using Chi-square test (Tables Ic & Id).

The main effect ([over_weight = 1.00]  and
[over_eating = 1.00]) tests on the null hypothesis that
the subjects are distributed evenly over the levels of
each variable. Here we have both variables quite
evenly distributed (over-weight: 52% vs 48% and
over-eating: 49.5% vs 50.5%, Table Ib), thus
p>0.05 for both main effects.

The standardised form (Z) can be used to assess
which variables/interactions in the model are the
most or least important to explain the data. The
higher the absolute of Z, the more “important”.

If our interest is to determine relationships,
we can stop here. But if we want to develop a simpler
model, then the next simpler (restricted) model
will be Over-weight + Over-eating (ignoring their
interaction, since the 2 variables are independent).

To define this Over-weight + Over-eating restricted
model, click on the custom button in Template III.
Put Over-weight and Over-eating to the Terms in
Model option (Template VI).

Template VI. Defining the restricted over-weight +
over-eating model.

In Template IV, check on the Residuals and
Frequencies options, and clear all the plot options.

SPSS outputs – Restricted model: Over-weight +
Over-eating.

Table IVa. Goodness-of-fit test: Over-weight + Over-eating.

Goodness-of-fit testsa,b

Value df Sig.

Likelihood ratio 3.417 1 .065

Pearson chi-square 3.407 1 .065

a. Model: Poisson.
b. Design: Constant + over_eating + over_weight.

Table III. Saturated model – parameter estimates.

Parameter estimatesb,c

95% confidence interval

Parameter Estimate Std. error Z Sig. Lower bound Upper bound

Constant 4.016 .134 29.922 .000 3.753 4.279

[over_weight = 1.00] -.177 .199 -.890 .373 -.567 .213

[over_weight = 2.00] 0a . . . . .

[over_eating = 1.00] -.291 .205 -1.417 .157 -.693 .112

[over_eating = 2.00] 0a . . . . .

[over_weight = 1.00]*
.525 .284 1.831 .067 -.037 1.077

[over_eating = 1.00]

[over_weight = 1.00]*
0a . . . . .

[over_eating = 2.00]

[over_weight = 2.00]*
0a . . . . .

[over_eating = 1.00]

[over_weight = 2.00]*
0a . . . . .

[over_eating = 2.00]

a. This parameter is set to zero because it is redundant.
b. Model: Poisson
c. Design: Constant + over_weight + over_eating + over_weight * over_eating



Singapore Med J 2005; 46(8) : 380

The goodness-of-fit test (Table IVa) compares
whether this restricted model (Over-weight +
Over-eating) is an adequate fit to the data. We want
the p-value (sig) to be >0.05. In this case, we have
p=0.065 which means that this restricted model is
adequate to fit the data.

Residual analysis helps us to spot outlier cells,
where the restricted model is not fitting well. The
Residual is the difference of the expected frequencies
and the observed cell frequencies. The smaller
the residual, the better the model is working for
that cell. The Standardized residuals (normalised
against the mean and standard deviation) should
have values <1.96 for a good fit. The Adjusted
(Studentized) residuals penalise for the fact that
large expected values tend to have larger residuals.
Cells with the largest adjusted residuals show
where the model is working least well. The Studentized

deviance residuals (Deviance) are a more accurate
version of adjusted residuals.

If we decide that over-weight is a response
variable and over-eating is the independent, a logistic
regression (taking into account of other covariates)
could be performed(2).

But if both are dependent variables (I over-eat thus
I am over-weight or I am over-weight thus I over-eat),
then a logistic model will not be appropriate. Let us
extend the above over-weight, over-eating analysis
by taking into consideration their gender (Table Va).

Table Va. Cross-tabulation of Over-weight, Over-eating
and Gender.

Over-eating Over-weight Count Male Female

Yes Yes 58 44 14

Yes No 41 23 18

No Yes 46 26 20

No No 55 23 32

Table Vb shows the SPSS structure.

Table Vb. SPSS data structure for Over-weight, Over-eating
and Gender.

Over-eating Over-weight Gender Count

Yes Yes Male 44

Yes No Male 23

No Yes Male 26

No No Male 23

Yes Yes Female 14

Yes No Female 18

No Yes Female 20

No No Female 32

Coding: Yes = 1 & No = 2. Male = 1 & Female = 2.

We can start by constructing the saturated model
and then remove the non-significant terms, or start
from the basic main effects model (without interaction
terms) and then build up. Let us use the latter.

Table Vc shows the goodness-of-fit for the restricted
model of Over-weight + Over-eating + Gender (main
effects only). The p-value is <0.05, which shows that
this model is not adequate to explain the data

Table Vc. Goodness-of-fit test for Over-weight + Over-eating
+ Gender.

Goodness-of-fit testsa,b

Value df Sig.

Likelihood ratio 17.446 4 .002

Pearson chi-square 18.761 4 .001

a. Model: Poisson.
b. Design: Constant + gender + over_eating + over_weight.

Let us use all two-way interactions: Over-weight +
Over-eating + Gender + Over-weight X Over-eating +
Over-weight X Gender + Over-eating X Gender.
To get this model, in Template III, custom with the

Table IVb. Residual analysis for Over-weight + Over-eating.

Cell counts and residualsa,b

Observed Expected

Over- Over- Standardised Adjusted
weight eating Count % Count % Residual residual residual Deviance

Yes Yes 58 29.0% 51.480 25.7% 6.520 .909 1.843 .890

No 46 23.0% 52.520 26.3% -6.520 -.900 -1.843 -.919

No Yes 41 20.5% 47.520 23.8% -6.520 -.946 -1.843 -.969

No 55 27.5% 48.480 24.2% 6.520 .936 1.843 .917

a. Model: Poisson.
b. Design: Constant + over_eating + over_weight.
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main effects and all two-way interactions (Template
VII). Table Vd shows that this model does fit the
data adequately (p=0.606).

Template VII. Restricted model with main effects and all
two-way interactions.

Table Vd. Goodness-of-fit test for main effects and all
two-way interactions.

Goodness-of-fit testsa,b

Value df Sig.

Likelihood ratio .265 1 .606

Pearson chi-square .265 1 .606

a. Model: Poisson.
b. Design: Constant + gender + over_eating + over_weight +

over_eating * gender + over_weight * gender + over_eating *
over_weight.

Two significant relationships were found (Table Ve).
Over-eating X Gender (p=0.015) and Over-weight
X Gender (p=0.014) interactions. This means that
males compared to females are both more likely to

Table Ve. Parameter estimates for main effects and all two-way interactions.

Parameter estimatesb,c

95% confidence interval

Parameter Estimate Std. error Z Sig. Lower bound Upper bound

Constant 3.492 .167 20.936 .000 3.165 3.819

[gender = 1.00] -.395 .244 -1.619 .105 -.873 .083

[gender = 2.00] 0a . . . . .

[over-eating = 1.00] -.651 .258 -2.523 .012 -1.157 -.145

[over-eating = 2.00] 0a . . . . .

[over_weight = 1.00] -.541 .252 -2.146 .032 -1.035 -.047

[over_weight = 2.00] 0a . . . . .

[over_eating = 1.00]*
.726 .298 2.435 .015 .142 1.311[gender = 1.00]

[over_eating = 1.00]*
0a . . . . .[gender = 2.00]

[over_eating = 2.00]*
0a . . . . .[gender = 1.00]

[over_eating = 2.00]*
0a . . . . .[gender = 2.00]

[over_weight = 1.00]*
.734 .297 2.469 .014 .151 1.317[gender = 1.00]

[over_weight = 1.00]*
0a . . . . .[gender = 2.00]

[over_weight = 2.00]*
0a . . . . .[gender = 1.00]

[over_weight = 2.00]*
0a . . . . .[gender = 2.00]

[over_eating = 1.00]*
.398 .294 1.356 .175 -.177 .974[over_weight = 1.00]

[over_eating = 1.00]*
0a . . . . .[over_weight = 2.00]

[over_eating = 2.00]*
0a . . . . .[over_weight = 1.00]

[over_eating = 2.00]*
0a . . . . .[over_weight = 2.00]

a. This parameter is set to zero because it is redundant.
b. Model: Poisson.
c. Design: Constant + gender + over-eating + over_weight + over_eating * gender + over-weight * gender + over_eating * over_weight.
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over-eat (OR = exp (0.726) = 2.07, 95% CI exp (0.142)
= 1.15 to exp (1.311) = 3.71) and be over-weight
(OR = exp (0.734) = 2.08, 95% CI exp (0.151) =
1.16 to exp (1.317) = 3.73). The standardised form (Z)
for both interactions are of similar sizes (2.435 &
2.469) which implies that both relationships are
equally important to explain this set of data. We
can stop here if our interest is to determine what
relationships are available in the data. We can proceed
to “reduce” the model by removing the interaction
terms that are not significant if one wants the most
Parsimonious model.

You are absolutely right! We can arrive at
the same results by performing 3 pair-wise
chi-square tests for the 3 variables – i.e. do chi-square
tests for Over-weight with Gender, Over-weight
with Over-eating, and Over-eating with Gender,
separately.

The interpretation of the results gets more
complicated with more categorical variables
and these variables can have more than 2 levels
(for example, Race). The discussion of log-linear
analysis here is far from comprehensive – the aim
here is to introduce to you what log-linear models
can do. Do seek help from a standard statistical
text or biostatistician in the event that you have
more “challenging” data, say 5 categorical variables
and some of them may have more than 3 levels
of responses.

One last caution: cells with zero frequencies
may cause non-convergence of the estimates. It is
recommended that the sample size should be
5 times the number of cells in the table. For
example, for a 2X2X2, we should have n = 5X8 =
40 (at least). There are 2 types of zeros - Structural
and Random (sampling). Structural zeros are those
where a situation can never happen (e.g. a man
getting pregnant!). Before analysis, such cells need
to be deleted from the table. Random (sampling)
zeros arise from sampling error, small sample size
or too many variables. Before analysis, set these
cells with zeros to have a very small number like
1E-12.

Poisson Regression is used to model the number
of occurrences of an event of interest (Example 1)
or the rate of occurrence of an event (Example 2) as
a function of some independent variables, and the
assumption of a normally distributed dependent
does not apply.

Example 1. Modeling the number of occurrences
of an event – the length of stay (LOS).

Table VIa shows the data for 10 subjects.

Table VIa. Data for the modeling of occurrences.

Gender Race Age LOS

male chinese 11 3

male malay 15 4

male malay 24 7

male indian 14 4

female chinese 13 4

female chinese 16 5

female malay 19 6

female malay 13 3

female indian 15 4

female malay 20 7

Coding: Male = 1 & Female = 2. Chinese = 1, Malay = 2 & Indian = 3.

We can perform a linear regression analysis(3)

on LOS if we have a larger dataset. The issue is that
we may have grouped data in which linear regression
would be impossible. Using linear regression would
quantify the LOS difference between Gender, while
poisson regression would provide the Relative Risk
(RR) on having a longer LOS between Gender.

Before performing a poisson regression, we have
to first “weight cases” using the variable LOS. Then
go to Analyze, Loglinear, General. Let us use
Gender + Race first (Template II). Custom the Main
effects model Gender + Race (Template III). Click
on Estimates option (Template IV).

Table VIb shows that the main effects model
(Gender + Race) is a good fit (p>0.05). Thus, we do
not require the interaction term.

Table VIb. Goodness-of-fit for Gender + Race model.

Goodness-of-fit testsa,b

Value df Sig.

Likelihood ratio 1.472 2 .479

Pearson chi-square 1.430 2 .489

a. Model: Poisson.
b. Design: Constant + gender + race.

Table VIc shows that [race = 2] compares with
[race = 3], i.e. Malays compared to Indians, were at a
higher risk (RR = exp (1.216) = 3.37, 95% CI exp (0.428)
= 1.5 to exp (2.0) = 7.39) of having a longer LOS.

In order to include a quantitative variable, Age,
in the poisson model (Gender + Race + Age),
a unique ID has to be created for each subject.
If “Id” variable is not present, go to Transform,
Compute (Template VIII). Type ID in Target Variable
option and $casenum in the Numeric Expression
option. This will create a new variable ID with
numbers 1 to 10.
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Table VIc. Parameter estimates for Gender + Race model.

Parameter estimatesb,c

95% confidence interval

Parameter Estimate Std. error Z Sig. Lower bound Upper bound

Constant 1.597 .372 4.295 .000 .868 2.325

[gender = 1] -.477 .300 -1.590 .112 -1.065 .111

[gender = 2] 0a . . . . .

[race = 1] .405 .456 .888 .374 -.489 1.300

[race = 2] 1.216 .402 3.022 .003 .428 2.005

[race = 3] 0a . . . . .

a. This parameter is set to zero because it is redundant.
b. Model: Poisson.
c. Design: Constant + gender + race.

Template VIII. Computing ID = $casenum.

Go to Template II, put Gender, Race and ID to
the Factors option and Age to the Cell Covariates
option (Template IX). Then custom (Template III)
the model Gender + Race + Age (leave ID alone).

Template IX. General log-linear analysis.

The following message will appear:

Click ok.

Table VIIa shows that no interaction terms are
required for this Gender + Race + Age model.
With Age included in the model, Race became not
significant. A one-year increase in age results in an
increased of exp (0.248) = 1.28 or 28% in risk of
having a longer LOS (Table VIIb).

Table VIIa. Goodness-of-fit for Gender + Race + Age model.

Goodness-of-fit testsa,b

Value df Sig.

Likelihood ratio 19.391 55 1.000

Pearson chi-square 19.488 55 1.000

a. Model: Poisson.

b. Design: Constant + age + gender + race.

Example 2. Modeling the incidence rate of an
infection.

The number of infections reported in three high-
risk wards of four hospitals were collected (Table
VIIIa). “Infected” refers to the number of cases
of the infections reported and “Total” is the total
number of subjects at risk.
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Table VIIIa. Number of infections by hospital by ward.

Hospital Ward Infected Total

1 1 10 51125

1 2 14 44660

1 3 31 76345

2 1 76 513578

2 2 62 335943

2 3 20 99884

3 1 45 263862

3 2 18 135490

3 3 10 39106

4 1 15 61728

4 2 12 56329

4 3 13 54459

Weight cases by Infected, then use the log-linear
model. Put Hospital and Ward in the Factors option
and Total in the Cell Structure option (Template
X). Custom the Hospital + Ward model.

Template X. General log-linear analysis.

The goodness-of-fit (Table VIIIb) for the
Hospital + Ward model shows that no interaction
terms are required. The results (Table VIIIc) show
that the risk of infections is independent of hospitals
but patients in Ward type 3 compared to Ward type 1
are more prone to have infections (RR=exp (0.343)
= 1.41, p=0.025).

Table VIIIb. Goodness-of-fit for Hospital + Ward model.

Goodness-of-fit testsa,b

Value df Sig.

Likelihood ratio 4.778 6 .573

Pearson chi-square 4.640 6 .591

a. Model: Poisson.
b. Design: Constant + Hospital + Ward.

Table VIIb. Parameter estimates for Gender + Race + Age model.

Parameter estimatesb,c

95% confidence interval

Parameter Estimate Std. error Z Sig. Lower bound Upper bound

Constant -2.267 .505 -4.489 .000 -3.257 -1.277

age .248 .030 8.180 .000 .189 .308

[gender = 1] -.436 .318 -1.372 .170 -1.058 .187

[gender = 2] 0a . . . . .

[race = 1] .126 .462 .272 .786 -.779 1.030

[race = 2] -.783 .481 -1.630 .103 -1.725 .159

[race = 3] 0a . . . . .

a. This parameter is set to zero because it is redundant.
b. Model: Poisson.
c. Design: Constant + age + gender + race.
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We can use Table VIIIc to predict the incidence
for Hospital A Ward 1 = exp (-8.178 + 0.283 – 0.343) =
exp (-8.238) = 0.000264 which is about 3 in 10,000.

We have carried out a very simplistic overview
of poison regression using SPSS. One note of
caution is that the present SPSS version is not
the suitable software to perform a proper poisson
regression analysis. SAS and STATA would
be preferred. The reason is that SPSS does not
allow us to check for the assumptions of Over/
Under Dispersion of the model, which is a crucial
assumption for a poisson regression model and
does not have the capability to rectify when the
assumptions are not satisfied.

A poisson distribution has this special property
that mean is equal to the variance. Thus an over

Table VIIIc. Parameter estimates.

Parameter estimatesb,c

95% confidence interval

Parameter Estimate Std. error Z Sig. Lower bound Upper bound

Constant -8.178 .181 -45.201 .000 -8.532 -7.823

[Hospital = 1] .283 .209 1.354 .176 -.126 .692

[Hospital = 2] -.257 .181 -1.425 .154 -.611 .097

[Hospital = 3] -.246 .201 -1.227 .220 -.640 .147

[Hospital = 4] 0a . . . . .

[Ward = 1] -.343 .153 -2.240 .025 -.644 -.043

[Ward = 2] -.243 .159 -1.528 .126 -.554 .069

[Ward = 3] 0a . . . . .

a. This parameter is set to zero because it is redundant.
b. Model: Poisson.
c. Design: Constant + Hospital + Ward.

dispersion means that the variance is much greater
than the mean (the reverse for under dispersion) and
this will produce severe underestimates of the
standard errors and thus overestimates the p-values
(more likely to be <0.05). This potential problem
is easily rectified by using a Negative Binomial
Regression that is available in SAS/STATA.

Our next article will be Biostatistics 307.
Conjoint analysis and canonical correlation.
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True False

Question 1. Which model in the log-linear analysis has a non-zero chi-square for
its goodness-of-fit test?
(a) The parsimonious model. � �
(b) The saturated model. � �
(c) The restricted model. � �
(d) All of the above. � �

Question 2. In the log-linear model parameter estimates table, which column gives
an indication on the “importance” of the main effect/interaction term contributing to the data?
(a) The p-value. � �
(b) The estimates. � �
(c) The standardised form (Z). � �
(d) All of the above. � �

Question 3. The exponential of the parameter estimates in log-linear model gives:
(a) The odds ratios. � �
(b) The hazard ratios. � �
(c) The relative risks. � �
(d) None of the above. � �

Question 4. The exponential of the parameter estimates in poisson regression gives:
(a) The odds ratios. � �
(b) The hazard ratios. � �
(c) The relative risks. � �
(d) None of the above. � �

Question 5. Under dispersion in poisson regression means:
(a) The mean is greater than the variance. � �
(b) The mean is smaller than the variance. � �
(c) The mean is equal to the variance. � �
(d) None of the above. � �
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