Diffusion-weighted MR imaging of the breast: comparison of apparent diffusion coefficient values of normal breast tissue with benign and malignant breast lesions

Sebnem Orguc1, MD, Isil Basara1, MD, Teoman Coskun2, MD

INTRODUCTION
The specificity of conventional magnetic resonance (MR) imaging is lower than its high sensitivity. Diffusion-weighted imaging (DWI), based on alterations in the microscopic motion of water molecules, promises improved specificity for breast MR imaging. In this study, we aimed to determine the diagnostic potential of DWI to differentiate between benign and malignant breast lesions and normal breast tissue.

METHODS
Dynamic contrast-enhanced breast MR imaging and DWI were applied to 108 women. Apparent diffusion coefficient (ADC) values were obtained for normal breast tissue (n = 183), benign lesions (n = 66) and malignant lesions (n = 58). The results were compared with the patients’ final diagnoses.

RESULTS
Mean ADC values for benign and malignant breast lesions were 1.04 × 10⁻³ ± 0.29 × 10⁻³ mm²/s and 2.00 × 10⁻³ ± 0.55 × 10⁻³ mm²/s, respectively (p = 0.001, Student’s t-test), while that for normal breast tissue was 1.78 × 10⁻³ ± 0.33 × 10⁻³ mm²/s. With a cut-off value of 1.46 × 10⁻³ mm²/s for ADC in receiver operating characteristic analysis, 95% sensitivity and 85% specificity were achieved for differentiating between benign and malignant lesions.

CONCLUSION
DWI of the breast can help differentiate benign and malignant breast lesions from normal breast tissue. DWI, which can be easily introduced into standard breast MR imaging protocols without increasing imaging times, promises to increase the accuracy of breast MR imaging without contrast media. However, its clinical value will depend on the standardisation of b-values and other technical parameters in larger future study series.

Keywords: apparent diffusion coefficient, breast cancer, breast tumour, diffusion-weighted imaging, magnetic resonance imaging
coefficient (ADC) maps were generated, and the ADC values of normal breast tissue for each patient and the lesions that could be visualised were measured. The ADC values of breast tissue were obtained from the fibroglandular areas while trying to omit the fatty tissue in the region of interest (ROI). For breasts with a dominant fatty pattern, a small ROI was used to minimise the inclusion of fat, as fat may artificially lower ADC values. For lesions, the ROI was placed over the tumour while trying to avoid areas of haemorrhage or necrosis. ADC measurement inevitably included debris and the liquefied part of infiltrative inflammatory lesions and abscesses, as wall thickness was insufficient for the placement of ROI. The sizes of ROI were 10–100 mm².

The mean age of the patients was 44.9 (range 19–77) years. There was no difference between the mean age of patients with malignant and benign lesions (45.0 years vs. 44.8 years, p = 0.9; Student’s t-test). The ADC measurements of normal breast tissue were obtained from 183 breasts. Unilateral mastectomy, post-radiation changes, postoperative changes and diffuse involvement of disease obscured normal breast tissue measurement in 33 patients. The ADC values of 134 breast lesions were obtained from a total of 93 patients.

On histopathological examination, 58 lesions proved to be malignant in 42 patients: invasive ductal carcinoma (IDC) n = 31 (Figs. 1 & 2); invasive lobular carcinoma (ILC) n = 1; mixed invasive lobular and ductal carcinoma (IDC+ILC) n = 3; ductal carcinoma in situ n = 2; mix IDC + mucinous carcinoma n = 1; IDC and pleomorphic carcinoma n = 1; medullary carcinoma n = 1; malignant phyllodes tumour n = 1; diffuse leukaemic infiltration of the breast n = 1 (Fig. 3). The mean size of the malignant lesions was 41.3 ± 34.3 mm.

A total of 66 benign lesions in 44 patients were included in the study. 35 lesions were histopathologically diagnosed as benign
fibroadenoma (n = 18) (Fig. 4), cystosarcoma phyllodes tumour (n = 2), fibrocystic changes (n = 4), seroma (n = 6), fat necrosis (n = 2), ductal hyperplasia (n = 1), papilloma (n = 1) and haematoma (n = 1). 31 benign lesions had typical BI-RADS (Breast Imaging Reporting and Data System) 2 findings on DCE-MRI and were diagnosed as cyst (n = 7), fibroadenoma (n = 20) and intramammarian lymph node (n = 4) (Fig. 5). There were 11 fibroadenomas that showed no increase in dimensions for at least two years compared to previous breast imaging studies. The follow-up periods of the remaining 20 lesions were less than two years. However, these were included in the study, as they showed definite benign imaging characteristics that were categorised as BI-RADS 2. The mean size of the benign lesions was 16.7 ± 11.3 mm, which was significantly smaller than that of the malignant ones (p = 0.001, Student’s t-test). The ADC values of ten lesions in seven patients with infectious disease of the breast were measured. The diagnoses of these patients were confirmed as granulomatous mastitis (n = 5), infected galactocele (n = 1) and tuberculosis abscess (n = 1) (Fig. 6).

Three patients with locally advanced breast carcinoma, one patient with leukaemic infiltration and three patients with granulomatous mastitis were diagnosed on core biopsy. Seven patients with seroma, one patient with infected galactocele, one patient with tuberculosis abscess and one patient with a haematoma were diagnosed by needle aspiration biopsy. The histopathological results of all other malignant and benign lesions were confirmed by surgical excision.

RESULTS
All malignant lesions, except an IDC measuring 4 mm in diameter, could be visualised on the ADC maps. Benign lesions < 1 cm in diameter with ADC values similar to breast tissue were more difficult to detect. For such patients, the coordinates of the lesion were correlated with post-contrast images. DWI images were measured.
non-diagnostic in three patients secondary to motion artefacts and were excluded from the study. No focal lesions were found in seven patients. When the ADC values of 124 breast lesions (malignant $n = 58$; benign $n = 66$) and 183 normal breast tissues were evaluated, the mean ADC value was $2.00 \times 10^{-3} \pm 0.55 \times 10^{-3}$ mm2/s for benign lesions and $1.04 \times 10^{-3} \pm 0.29 \times 10^{-3}$ mm2/s for malignant ones. The difference between the ADC values of benign and malignant lesions was statistically significant ($p = 0.001$; Student’s t-test). The cut-off value was determined by the peak of the receiver operating characteristic (ROC) curve, which yielded optimal sensitivity and specificity, so that the numbers of false negative and false positive cases were in an acceptable range. When a cut-off value of 1.46×10^{-3} mm2/s was selected as the ADC value in the ROC analysis, it achieved 95% sensitivity and 85% specificity for differentiating between benign and malignant breast lesions (Fig. 7).

The mean ADC value of infectious lesions of the breast was determined as 1.05×10^{-3} mm2/s (range 0.57×10^{-3} to 2.61×10^{-3} mm2/s). The mean ADC value of the 183 normal breast tissues was calculated as $1.78 \times 10^{-3} \pm 0.33 \times 10^{-3}$ mm2/s, which differed significantly from that of the malignant lesions.

DISCUSSION

Breast MR imaging is increasingly used for the detection, diagnosis and staging of breast cancer. During breast MR imaging, T1-weighted, T2-weighted and dynamic post-contrast series are used, and a combination of morphological and kinetic features are applied to obtain high sensitivity. However, hormonal and proliferative changes, fibroadenomas and papillomas that
give rise to false positive results lower the specificity of breast MR imaging considerably.

DWI is an advanced MR imaging technique based on the diffusion signal of tissues, which reflects the amount of random motion of water molecules into tissues due to thermal agitation (Brownian motion).\(^9,11,12\) DWI was first introduced for acute cerebral infarction, for which it has become one of the primary imaging modalities. However, it is now being used for other clinical applications over the entire body, and holds great promise for the detection and characterisation of tumours of other organs such as the ovaries, pancreas, prostate and breast.\(^9,12-19\) DWI helps in the investigation of breast masses by providing information about the biological behaviour of the tumour.\(^11\) Several studies have evaluated breast lesions using DWI.\(^9,12,14,34\)

DWI has been reported to be a useful technique for the discrimination of benign and malignant lesions.\(^9,12,14,16,20\) Malignant lesions with tightly packed cells have a reduced extracellular space, resulting in decreased diffusion of water. The result is a high DWI signal intensity and a lower ADC value, indicating restricted diffusion on an ADC map (Figs. 1–3). On the contrary, benign lesions with a larger extracellular space have water molecules that are more mobile, and thus higher ADC values (Figs. 4 & 5).\(^21-23\) Similar to the findings of other reports in the literature, our finding, which was based on the ADC values of 58 malignant lesions, 66 benign lesions and 183 normal breast tissues, supports the consensus that DWI can successfully differentiate between benign and malignant lesions (Table I).\(^6,9,14,16,21-28,30,12\)

In a meta-analysis of 12 studies, Tsushima et al reported that the ADC values of benign breast tumours were between 1.41×10^{-3} mm\(^3\)/s and 2.01×10^{-3} mm\(^3\)/s, and those of malignant lesions were in the range of 0.90×10^{-3} mm\(^3\)/s to 1.61×10^{-3} mm\(^3\)/s.\(^22\) The mean ADC values of normal breast tissue in our study were in the range of 1.51×10^{-3} mm\(^3\)/s to 2.37×10^{-3} mm\(^3\)/s. The mean ADC value for malignant lesions was found to be 1.04×10^{-3} ± 0.29×10^{-3} mm\(^3\)/s, which was compatible with that reported in the literature.

The cut-off ADC value in our series was determined on the basis of the maximum ADC value that gave a specificity of 95% in the ROC analysis. The specificity and sensitivity of reports in the literature based on the cut-off values selected are summarised in Table II.\(^6,9,16,23,27,28,30\) The findings of statistical analysis in our series were similar to those in the literature. The mean ADC of benign lesions in our study also showed a value within the reported range, although it was at the higher end. It is possible that the inclusion of patients with fibrocystic changes and seromas in the study population may have increased the mean ADC value slightly.

When the range of ADC values was considered, a slight overlap was observed in the ADC values of benign and malignant lesions, both in the literature and in our series. Some benign conditions, such as haematomas, abscesses, fibrosis and inflammatory lesions, are known to exhibit low ADC values.\(^31\) Due to the wide range of ADC values reported in patients with inflammatory diseases and the false positive results known in this group of patients, these patients were not included in the benign group for statistical analysis in our study. Mucinous carcinomas with high mucin content have also been reported to contribute to high ADC values.\(^27\) On the contrary, the mucinous and medullary carcinomas in our series exhibited low ADC values. As ADC values have been reported to be higher in the central necrotic

<table>
<thead>
<tr>
<th>Study</th>
<th>Malignant lesion</th>
<th>Benign lesion</th>
<th>b-value</th>
<th>Normal tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI(^*) (× 10(^{-3}) mm(^3)/s)</td>
<td>ADC(^*) (cm)</td>
<td>DWI(^*) (× 10(^{-3}) mm(^3)/s)</td>
<td>ADC(^*) (cm)</td>
</tr>
<tr>
<td>Marin et al(^6)</td>
<td>0.95 ± 0.18</td>
<td>2.21</td>
<td>1.48 ± 0.37</td>
<td>1.92</td>
</tr>
<tr>
<td>Gue et al(^20)</td>
<td>0.97 ± 0.20</td>
<td>2.75 (0.4–6)</td>
<td>1.57 ± 0.23</td>
<td>2.64 (0.5–9)</td>
</tr>
<tr>
<td>Kinosihita et al(^24)</td>
<td>1.22 ± 0.19</td>
<td>2.7 (0.8–8)</td>
<td>1.495 ± 0.181</td>
<td>1.7 (1–3)</td>
</tr>
<tr>
<td>Woodhams et al(^25)</td>
<td>1.12 ± 0.24</td>
<td>2.2 (0.7–7)</td>
<td>1.51 ± 0.068</td>
<td>NA</td>
</tr>
<tr>
<td>Woodhams et al(^24)</td>
<td>1.22 ± 0.31</td>
<td>3.68 (0.7–6)</td>
<td>1.67 ± 0.54</td>
<td>3.4 (0.5–11)</td>
</tr>
<tr>
<td>Ruboseva et al(^21)</td>
<td>0.95 ± 0.027</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kuroki et al(^23)</td>
<td>1.12 ± 0.23</td>
<td>2.43</td>
<td>1.448 ± 0.45</td>
<td>NA</td>
</tr>
<tr>
<td>Hatakenaka et al(^27)</td>
<td>1.15 ± 0.26</td>
<td>2.65 ± 1.28</td>
<td>1.66 ± 0.30</td>
<td>2.14 ± 0.76</td>
</tr>
<tr>
<td>Lu et al(^28)</td>
<td>0.87 ± 0.26</td>
<td>3.2 (1.6–5.1)</td>
<td>1.59 ± 0.26</td>
<td>1.6 (0.5–21)</td>
</tr>
<tr>
<td>Pereira et al(^29)</td>
<td>0.92 ± 0.26</td>
<td>3.09 (1.0–11.2)</td>
<td>1.50 ± 0.34</td>
<td>1.68 (0.8–4.7)</td>
</tr>
<tr>
<td>Sinha and Sinha(^30)</td>
<td>1.01 ± 0.17</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Present study</td>
<td>1.04 ± 0.29</td>
<td>4.13 ± 3.43</td>
<td>2.00 ± 0.55</td>
<td>1.67 ± 1.13</td>
</tr>
</tbody>
</table>

\(^{*}\)Values expressed as mean ± SD. \(^{†}\)Values expressed as mean (range) or mean ± SD. ADC: apparent diffusion coefficient; DWI: diffusion-weighted imaging; NA: not available; SD: standard deviation
areas of malignant tumours, they were measured from the periphery of necrotic tumours in our series.

DWI provides qualitative and quantitative information related to tumour cellularity as ADC is a quantitative measurement reflecting the free motion of water molecules, which is inversely proportional to the tumour cellular density. High cellularity, intracellular and extracellular oedema, high viscosity and high grade of fibrosis decrease the mobility of water molecules, resulting in restricted diffusion in DWI. The microscopic movement of biological tissues consist of molecular diffusion in the extracellular compartment and microcirculation of blood in the capillary network (flow). Therefore, perfusion is another factor that affects ADC values. ADC values also differ with various b-values, as seen in the literature. Images with low b-values result in less diffusion-weighted images, as a lower gradient is applied. Also, the extension of microvascular structures in malignant lesions may increase the perfusion effect on ADC values in images with low b-values. However, the signal-to-noise ratio in these images is higher than that in diffusion images with high b-values.

The variations seen in the ADC values of previous reports can be explained by the difference in their b-values (0–1,074 s/mm²), other technical factors and variations in the pathologies included in these series. Typically, at least two b-values should be used during DWI in order to enable meaningful ADC interpretation, although accuracy increases when more b-values are used. Woodhams et al reported that b < 750 mm²/s was highly efficient in detecting breast masses. Pereira et al, however, reported no significant difference between the ADC values of benign and malignant lesions when different combinations of b-values were used, and thus concluded that using multiple b-values in a DWI sequence was unnecessary. In our study, we had used b-values of 0 s/mm² and 600 s/mm² in order to limit the examination time.

The diagnostic accuracy of DWI for breast can only be ascertained once technical parameters and post-processing procedures are standardised for the modality. Major technical limitations associated with it are distortion of the images secondary to susceptibility, chemical shift, motion artefacts and low spatial resolution. Even under optimal circumstances, small lesions may not be visualised on ADC maps, as Kinoshita et al have reported that lesions < 10 mm in diameter cannot be demonstrated by DWI. Another limitation is that of non-mass-like enhancing lesions that form large and non-compact lesions with normal parenchyma intervening within the tumour. Non-IDCs, lobular carcinoma in situ, atypical ductal hyperplasia, papillomas, hormonal changes and fibrocystic disease may show this type of enhancement. According to Guo et al and Sinha et al, the mean ADC value is inversely proportional to cellular density, and therefore, these lesions may exhibit less restriction of diffusion. Finally, it should be noted that DWI cannot replace dynamic breast MR imaging with contrast, but can be used as a complementary technique to evaluate breast masses. DWI may also provide a useful alternative in cases where contrast media is contraindicated for patients.

To summarise, DWI is a valuable tool that can be used to analyse the molecular characteristics of tissue in vivo. It utilises and quantifies the random motions of molecules and provides additional diagnostic information for the differential diagnosis of enhancing breast lesions. Short acquisition times and no need for contrast material make it an easy adjunct to standard breast MR imaging protocol. With an ADC cut-off value of 1.46 × 10⁻³ mm²/s in the ROC analysis, we were able to achieve a sensitivity of 95% and specificity of 85% when differentiating between benign and malignant lesions in our study population using DWI. The ADC values obtained from our study were compatible with those in the literature. Our results support the consensus that DWI of the breast has the diagnostic potential to differentiate benign and malignant lesions of the breast from normal breast tissue.

REFERENCES

<table>
<thead>
<tr>
<th>Study</th>
<th>Cut-off ADC values (× 10⁻³ mm²/s)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marini et al(6)</td>
<td>1.1</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>Guo et al(9)</td>
<td>1.30</td>
<td>93</td>
<td>88</td>
</tr>
<tr>
<td>Woodhams et al(8)</td>
<td>1.60</td>
<td>93</td>
<td>46</td>
</tr>
<tr>
<td>Ruboseva et al(25)</td>
<td>1.13</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>Hatakenaka et al(27)</td>
<td>1.48</td>
<td>83.9</td>
<td>81.3</td>
</tr>
<tr>
<td>Luo et al(28)</td>
<td>1.22</td>
<td>88.9</td>
<td>87.9</td>
</tr>
<tr>
<td>Pereira et al(30)</td>
<td>1.21</td>
<td>92.3</td>
<td>92.3</td>
</tr>
<tr>
<td>Present study</td>
<td>1.46</td>
<td>95</td>
<td>85</td>
</tr>
</tbody>
</table>

ADC: apparent diffusion coefficient.

