A call to arms: a perspective of safe general surgery in Singapore during the COVID-19 pandemic

Min-Hoe Chew¹, MBBS, FRCSEd, Frederick H Koh¹, MBBS, FRCSEd, Kheng Hong Ng², MBBS, FRCSEd

¹Department of General Surgery, Sengkang General Hospital, ²Gleneagles Hospital, Singapore

Correspondence: Adj Assoc Prof Min-Hoe Chew, Head and Senior Consultant, Department of General Surgery, Sengkang General Hospital, 110 Sengkang East Way, Singapore 544886. chew.min.hoe@singhealth.com.sg

Singapore Med J 2020, 1–10
https://doi.org/10.11622/smedj.2020049
Published ahead of print: 3 April 2020

Online version can be found at http://www.smj.org.sg/online-first
INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic crisis has reached a critical juncture. At the time of writing of this article, the World Health Organization has reported more than 750,800 cases and 36,405 deaths.\(^{(1)}\) The speed of disease spread has been staggering. While it took three months to reach the first 100,000 cases, it took only 12 days to reach the next 100,000 and less than five days to cross the next 200,000 cases.\(^{(2)}\)

The first imported case of COVID-19 was reported in Singapore on 23 January 2020.\(^{(3)}\) Local transmission was confirmed on 4 February 2020 and the Disease Outbreak Response System Condition (DORSCON) was raised to Orange on 7 February 2020.\(^{(4)}\) DORSCON is a Singapore-level colour-coded framework defining the infectious disease condition, as well as the measures taken to reduce disease transmission.\(^{(5)}\) As of 29 March 2020, there is a total of 844 cases in Singapore and three deaths.\(^{(2)}\)

Surgical safety has fallen under the spotlight as the pandemic shifts epicentres from China to Europe and the United States of America.\(^{(1)}\) Surgeons are called upon to cancel elective procedures with the focus to maintain only emergency operations and elective cancer surgeries.\(^{(6-9)}\) These recommendations have come from guidelines based on experience from Italy\(^{(10)}\) and China.\(^{(11)}\) Decisions to persist with elective surgeries in some countries have met with opposition and criticism.\(^{(12)}\)

Concerns are mainly centred on the risk of viral transmission during surgery. To date, the evidence is clear that COVID-19 is transmitted via close contact through respiratory droplets and fomites.\(^{(13-15)}\) Airborne transmission risks are possible and highest during aerosol-generating clinical procedures such as intubation, extubation, laparoscopy and endoscopy. These procedure present inherent risks to anaesthesiologists, surgeons and operating nursing staff, or any unsuspecting person within the operating room (OR).
Various international bodies have since published recommendations. Although the evidence is not strong, human immunodeficiency virus, *Corynebacterium* and papillomavirus has been detected in surgical smoke.\(^{(16,17)}\) The use of laparoscopic ultrasonic scalpels and diathermy also produces a far higher concentration of surgical smoke than open surgery due to low gas mobility in the pneumoperitoneum. Furthermore, viral cellular components are not deactivated effectively due to the low temperatures.\(^{(10)}\) The risk to the surgeon is thus theoretically higher, especially during the evacuation of gas, which can happen during specimen extraction, venting of smoke via trocars during surgery to improve visualisation, or unintended gas leakages due to poor seals between trocars and the abdominal wall. The second concern is the utility of valuable personal protective equipment (PPE). PPE has reached critical shortages worldwide.\(^{(18)}\) Graphic images of healthcare workers (HCW) using self-made PPE from plastic or garbage bags, as well as social media posts of complaints from the lack of availability of PPE or restrictions on the use of N95 respirators, have gone viral. These posts come from many HCW of respected medical systems.

THE SITUATION IN SINGAPORE

Our experience in the severe acute respiratory syndrome (SARS) coronavirus in 2003 has been critical. We had witnessed high rates of viral transmission among HCW. In Singapore, 41% of 238 SARS patients were HCW with five fatalities.\(^{(19)}\) The disease was only contained with strict adherence to infection control practices. Two hospitals reported changes in their practices in the OR.\(^{(20,21)}\) This included reorganisation and physical modification of the OR, infection control practices and staff training on personal protection. Our local experience of surgeries during SARS consisted of 41 procedures performed, of which 15 were tracheostomies (high-risk patients). With measures in place, although 124 HCW had direct contact with SARS patients, there was zero transmission.\(^{(20)}\)
Our response to the COVID-19 outbreak has been rapid. In various hospitals, clinical stratification with screening procedures were implemented to ensure elective patient care could continue safely. These evolved as the disease outbreak situation worsened. All patients were administered a health and travel declaration, and those with a history of travel to affected areas or flu-like symptoms were advised to postpone surgery. All hospitals installed thermal scanners to detect possible symptomatic cases on the day of admission.

For departments, staff segregation was implemented to ensure business continuity plans could continue. The segregation of teams ensured that departments would remain functional should anyone fall ill. Also, stepwise reduction of elective work in public hospitals was implemented to allow for deployment of manpower to frontline departments such as emergency departments (ED) and intensive care units (ICU).

For surgeons, refresher training was conducted on the use of PPE. This included N95 mask fitting as well as training on powered air-purifying respirators (PAPR). All staff were also compliant to twice daily temperature monitoring. In some hospitals, temperatures could be entered into web-based forms via personal smartphones. Staff who developed symptoms were to seek medical consultation within the hospital staff clinic. This enabled symptomatic staff to be identified promptly.

In various hospitals, detailed workflows on how to operate on COVID-19 cases were created. These included emergency suspect cases that were pending swab test results. These were emergency cases that required time-sensitive surgeries (e.g. limb salvage), or were very sick patients whose outcomes could be compromised while waiting for swab test results to return. For some hospitals, alternate OR complexes separated from the main OR were identified for COVID-19 patients, thus avoiding contamination of other ORs. Some newer hospitals have negative pressure ORs to prevent dissemination of the virus beyond the OR.
In many ORs, there is an average of 15–40 air exchanges per hour. It has been suggested that it may take 14–18 minutes to ensure clean OR air for the next patient or staff who wears a surgical mask.\(^{(24)}\) The hospital that the author works in (Sengkang General Hospital) has created an intubation-extubation protocol that has been in practice since the COVID-19 outbreak. In this protocol, a 5-minute pause has been mandated during intubation and extubation, with only the anaesthetists and assistant donning full PPE in the OR. This ensures that at least two gas exchanges of the OR are taken and enhances safety in the very unlikely chance that the surgeons are operating on an undiagnosed COVID-19 case. To address the concerns of laparoscopy, an additional 15 minutes have been factored in, which commences on evacuation of the pneumoperitoneum. This allows a complete 20 minutes of air exchange on completion of surgery and extubation (Box 1).

DISCUSSION

The COVID-19 pandemic outbreak has shown no signs of abating. Cautious guidelines have been proposed in the Western surgical community, which anticipated a ‘sky-rocketing’ of cases in the coming few weeks.\(^{(8,9)}\) Resource preservation and surgeon safety have been the priority in these recommendations.

In Singapore, the situation is quite different. National detection and containment strategies with aggressive contact tracing\(^{(25)}\) have kept the disease outbreak in a relatively contained mode. Measures in hospitals to ensure clinical stratification and judicious postponements, staff segregation in general surgical departments to maintain business continuity and provide optimal surgical care, and individual responsibility of surgeons have allowed for a safe environment to continue elective cases. There has been sufficient PPE as well.
Nonetheless, with the sharp rise in imported cases in the last few weeks, it is imperative that there is a heightened alert to the dangers of viral transmission during surgery. Similarly, resource allocation and preservation still remains a major consideration to facilitate manpower deployment and resource devotion if required by the frontline such as the ED and ICU. For general surgeons in the pandemic phase of the COVID-19 outbreak, some principles should be considered:

1. All surgical patients must undergo mandatory pre-surgery screening to determine their risk of COVID-19 infection. Besides travel history, information collected could include contact with those on home quarantine or stay home notices. Postponement can be considered.

2. Elective surgery should only be performed for diseases that are time-sensitive (e.g. cancers, limb salvage, symptomatic benign disease with risk of infections or deterioration).

3. Emergency surgery should be performed promptly but only with adequate staffing and PPE.

4. Aerosol-generating procedures such as laparoscopy and endoscopy can continue, but additional measures should be considered. Surgeons and OR/endoscopy staff should be in full PPE, including N95 respirators or PAPR. Adequate air-exchange times in the OR should be considered if laparoscopy surgery is performed. Minimal staff should be present in OR during laparoscopic surgery.

5. Be mindful of the consumption of PPE. Risk stratification of patients is important to avoid over-depletion of PPE supplies.

6. Surgical policies may have to change as the pandemic disease burden evolves.
While the above measures are by no means exhaustive, these guiding principles help to align some of the perspectives that all general surgeons can adopt in the coming weeks to months. Our fight against the COVID-19 pandemic is just beginning, and all surgeons must be fully ready for the difficult period ahead.

REFERENCES

Box 1. Suggested intubation-extubation protocol during a pandemic:

1. Intubation to be performed only with one anaesthetist, surgical doctor and anaesthetic unit (AU) nurse present in the operating room (OR). (Note: surgeon to wear N95 if assisting in intubation)

2. All personnel in the OR during intubation should wear N95 and eye protection.

3. Surgical team complete ‘sign-in’ then vacate OR; only anaesthetic team to remain in OR during intubation/aerosol generating procedure.

4. Anaesthetist to announce ‘Clear OR, intubation now’ to vacate personnel out of OR during intubation. No vendors allowed in OR till support is required.

5. For all non-laparoscopic surgeries: the surgical team must wait 5 min after intubation to allow clean scrub of air. (Note: the OR performs 25 cycles of air exchange per hr, 100% clean air will be circulated in OR within 2.5 min; the 5 min allowance will ensure 2 cycles of air exchange are performed). Operation to proceed with surgical masks.

6. Extubation to be done only with anaesthetist team in OR. Anaesthetist to announce ‘Clear OR, extubation now’ to initiate extubation. The rest of the surgical team to vacate the OR.

7. Anaesthetist to announce ‘Extubation complete’ after patient is fully extubated. The rest of the surgical team members to wait 5 min after extubation before returning to OR.

8. For all elective and emergency laparoscopic surgeries: all staff in laparoscopic surgeries to be in N95 throughout the case and can remain in OR during intubation and extubation.

9. Doors (OR main door and scrub door) are locked at induction of anaesthesia and will remain so until 15 min after deflation of pneumoperitoneum. Access to induction room is permitted.

10. Upon final deflation of pneumoperitoneum, circulating nurse to start timer countdown for 15 min. Doors to remain closed until 15 min is up.

11. At extubation, staff in N95 can remain. OR doors to remain closed until 5 min after end of extubation.