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INTRODUCTION
This review uses the nomenclature proposed by Gottsch et al 
to describe the kisspeptin signalling system. KISS1 and Kiss1 
refer to the human and non-human genes for kisspeptins, while 
KISS1R and Kiss1r refer to the human and non-human receptors, 
respectively. The gene products of KISS1 and Kiss1 are collectively 
known as kisspeptins.(1)

The KISS1/Kiss1 gene encodes the kisspeptin precursor, a peptide 
comprising 145 amino acids.(2) This is proteolysed to fragments of 
various lengths.(3-5) Kisspeptin-54, comprising 54 amino acids, is 
the major fragment,(5) while other fragments include kisspeptin-10, 
kisspeptin-13 and kisspeptin-14. (Fig. 1) These fragments share an 
RFamide motif at the carboxy terminal.(3-5) Kisspeptins are expressed 
in the hypothalamus, gonads, placenta, liver and pancreas,(3-6) and 
bind to KISS1R/Kiss1r with equal efficacy.(3)

Kiss1r was discovered as an orphan receptor in the rat brain. It 
is a G-protein coupled receptor (GPCR) with homology to galanin 
receptors.(6) KISS1R was discovered later, and was variably termed 
GPR54, AXOR12, hOT7T175 and HH8.(3-5) KISS1R/Kiss1r was 
subsequently recognised as the endogenous kisspeptin receptor. 
It is expressed in the hypothalamus, pituitary gland, gonad, 
placenta, pancreas and kidney.(3,4,6-10)

INTRACELLULAR SIGNALLING 
MECHANISMS
KISS1R/Kiss1r is a GPCR coupled to the G protein subunit, Gq/11α

(3,4) 
Ligand binding activates phospholipase C (PLC), leading to the 
hydrolysis of phosphatidyl inositol bisphosphate and the formation 
of diacylglycerol (DAG). DAG then activates protein kinase C. 
Mitogen-activated protein kinases (MAPKs) are phosphorylated, 
thereby activating β-arrestin and inositol-1,4,5-triphosphate. 
Consequently, intracellular calcium is released, depolarising the 
neuron(3,4,11-15) (Fig. 2). PLC-independent mechanisms may also 

increase the intracellular calcium level; these include the opening 
of inwardly rectifying potassium channels and non-selective 
cation channels.(13,16) Kisspeptin neurons form synapses with 
gonadotrophin-releasing hormone (GnRH) expressing neurons. 
Depolarisation of kisspeptin neurons leads to the depolarisation of 
GnRH neurons, and subsequent modulation of luteinising hormone 
(LH) and follicle-stimulating hormone (FSH) release.

KISS1R/Kiss1r is desensitised with continuous kisspeptin 
exposure. In animals, intermittent kisspeptin administration 
was found to raise LH levels. However, LH was suppressed 
after continuous administration of kisspeptin, as it induced 
long-lasting depolarisation in GnRH neurons, followed by 
desensitisation.(7,9,13,16-24) Such desensitisation is not due to GnRH 
depletion,(7,17) but may be due to clathrin-mediated internalisation 
of arrestin and KISS1R in internalised vesicles after kisspeptin 
activation.(15)

Cotransmitters of kisspeptin signalling
Neurokinin B (NKB) and dynorphin (Dyn) are cotransmitters of 
kisspeptin signalling. NKB is a tachykinin peptide that binds to 
the receptor NK3R.(25) In humans, NKB is called TAC3 and binds 
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Fig. 1 Diagram shows the structure of a kisspeptin (Kp) protein.
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to the receptor TACR3.(27) Dyn is an endogenous opioid peptide 
that binds to the kappa opioid receptor.(28) NKB is an excitatory 
stimulus,(29-32) while Dyn is an inhibitory stimulus to kisspeptin 
release in the hypothalamus (Fig. 3).(28,30,33) Evidence of NKB and 
Dyn as cotransmitters includes the colocalisation of Kiss1, NKB 
and Dyn in the neurons of animal hypothalami.(34-36) These neurons 
are termed kisspeptin/NKB/Dyn (KNDy) neurons and project to 
GnRH neurons in animals,(34) in keeping with the role of kisspeptins 
in modulating GnRH release (Fig. 3). Similarly, NK3Rs are found in 
the hypothalami and GnRH neurons of animals.(37-39) Importantly, 
NK3R agonists activated Kiss1 neurons and increased LH secretion 
in rats. This observation was, however, absent in Kiss1r knockout 

mice,(29-31) suggesting that NKB is upstream of Kiss1r in the 
signalling pathway.(32) In addition, inactivating mutations of TAC3 
and TACR3 cause hypogonadotrophic hypogonadism (HH).(27) Dyn 
was also found to inhibit LH secretion in animals.(28,30,33)

Neuroanatomy of the kisspeptin signalling system
Kisspeptins and their receptors are localised to various parts of the 
nervous system. The location of kisspeptin neurons differs between 
animal species. In humans, kisspeptin neurons were identified 
in the hypothalamus, basal ganglia and periventricular region, 
while KISS1R was localised to the hypothalamus, basal ganglia, 
amygdala, substantia nigra, hippocampus and spinal cord.(4,5,36) 
In rodents, kisspeptin neurons were demonstrated in various parts 
of the hypothalamus, including the arcuate nucleus (ARC) and 
the anteroventral periventricular nucleus (AVPV);(40-45) kisspeptin 
neurons in the AVPV formed the major afferent neurons to GnRH 
neurons.(42) In sheep hypothalami, kisspeptins were detected in the 
preoptic area (POA) and the ARC,(46-48) with the kisspeptin neurons 
in the POA forming the major afferent neurons to GnRH neurons.(47)

REPRODUCTIVE ROLE
Regulation of GnRH
Kisspeptin neurons are located in the posterior part of the ARC, which 
is the putative GnRH pulse generator in primates.(49) Administration 
of kisspeptin antagonists in this region suppresses GnRH pulsatility 
in animals,(50,51) suggesting that kisspeptin neurons form the 
GnRH pulse generator. Kisspeptins stimulate GnRH secretion by 

Fig. 3 Diagram shows cotransmitters of kisspeptin (Kp) signalling. Dynorphin 
(Dyn) inhibits and neurokinin B (NKB) stimulates Kp release by Kp/NKB/Dyn 
(KNDy) neurons.(25) ARC: arcuate nucleus; GnRH: gonadotrophin-releasing 
hormone; POA: preoptic area (Adapted from Pinilla et al)(26)

Fig. 2 Diagrams show (a) KISS1R in the dormant state; (b) kisspeptin ligand (Kp) binding activating the G protein subunit, Gq/11α, and subsequently 
phospholipase C (PLC); (c) PLC activation leading to the formation of inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG); and (d) IP3 causing 
the release of intracellular calcium (Ca2+) from the endoplasmic reticulum (ER). PLC-independent mechanisms open the potassium (K+) channels. These 
events depolarise the kisspeptin neuron.(26) GTP: guanosine triphosphate; PIP2: phosphatidyl inositol bisphosphate (Adapted from Pinilla et al)
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GnRH neurons. This effect was observed with both central and 
systemic administration of kisspeptins.(52-58) Human studies showed 
kisspeptin-induced LH release in women.(59) In animals, GnRH 
and LH levels are elevated by kisspeptins.(7,52,54,58,60-62) Kisspeptins 
also induced C-fos expression (marker of cellular activation) in 
rodent GnRH neurons(8,54) and evoked depolarisation of GnRH 
neurons in electrophysiological studies.(9,13,16,19,20) Moreover, 

the stimulatory effect of kisspeptins can be blocked by GnRH 
antagonists.(53,54,60,62,63) Human subjects with KISS1R mutations 
and HH responded to GnRH, while mice with Kiss1r mutations 
preserved hypothalamic GnRH content.(64) Collectively, these 
observations affirm that kisspeptins are excitatory stimuli located 
upstream of GnRH in the hypothalamic-pituitary-gonadal 
(HPG) axis.

It is unclear whether kisspeptins directly regulate pituitary 
function. In contrast to its effect on LH secretion, the FSH response 
to kisspeptin is comparatively delayed and less robust in humans 
and rats.(59,63,65) This may be due to differences in secretory patterns 
of the gonadotrophins,(66) different gonadotroph responses to 
kisspeptins(65,67) or different feedback signals to the gonadotrophs 
(e.g. inhibin).(68,69)

Sexual dimorphism
Kisspeptin neurons are located in two main regions of the 
hypothalamus. The first region is the ARC in rodents(44,45,70) or its 
equivalent, the infundibular nucleus, in primates.(71-73) This group 
of neurons mediates oestrogen-induced negative feedback on 
the HPG axis.(49,72,73) The second region is the AVPV in rodents, 
or the equivalent POA in sheep and primates.(25,36,74) This group 
of neurons mediates positive feedback from oestrogen(75-78) 
(Fig. 4). AVPV neurons behave differently between the genders. 
Only female AVPV neurons, which are also larger and more 
numerous,(43,70) demonstrate the LH surge in response to 
oestrogen.(79-83) Similarly, oestrogen increases Kiss1 mRNA and 
kisspeptin levels in rodent AVPV.(44,45)

Sex steroid exposure in utero may determine the behaviour 
of the kisspeptin system and HPG axis after sexual maturation. 
In rats, neonatal exposure to oestrogenic compounds suppressed 
kisspeptin production in the peripubertal and adult stages.(52,84,85) 
This resulted in HH, which resolved with exogenous kisspeptin. 
In neonatal female rats, exposure to androgenic compounds led 
to reduced kisspeptin production by the AVPV during adulthood. 
This was not reversible with exogenous oestrogen.(70) Thus, 
early androgen exposure led to androgenisation of the AVPV. 
Conversely, gonadectomised neonatal male rats had increased 
kisspeptin production in the AVPV during adulthood. These rats 
demonstrated the LH surge with exogenous oestrogen, indicating 
feminisation of the AVPV.(86)

Negative feedback regulation
Oestrogen and testosterone exert negative feedback on GnRH 
release (Fig. 4b), which is mediated via oestrogen receptor α 
(ERα).(44,45,52) Testosterone is aromatised to oestrogen prior to 
receptor binding(45, 87) (Fig. 4). However, GnRH neurons do not 
express ERα, while kisspeptin neurons do.(44,45,71,75,88) Hence, it is 
likely that oestrogen binds to ERα on kisspeptin neurons in the ARC 
or infundibular nucleus, inhibiting kisspeptin and subsequently 
GnRH release.(44) Several lines of evidence support this hypothesis. 
In gonadectomised animals and humans, sex steroid levels 
declined, while kisspeptins, GnRH and gonadotrophin levels 
increased.(8,44,45,52,71,72,89,90) However, antagonism of Kiss1r in 
rodents prevented the rise of gonadotrophins.(31,50,91,92) Notably, 

Fig. 4 The diagram shows that (a) kisspeptin (Kp) stimulates gonadotrophin-
releasing hormone (GnRH) secretion and subsequently gonadotrophin 
release. Testosterone (T) is aromatised to oestrogen (E), which exerts 
negative feedback on the anterior pituitary gland and hypothalamus. 
(b) E exerts negative feedback on GnRH via Kp neurons in the arcuate 
nucleus (ARC). (c) E exerts positive feedback on GnRH via Kp neurons in 
the anteroventral periventricular nucleus (AVPV).(25) FSH: follicle-stimulating 
hormone; LH: luteinising hormone (Adapted from Pinilla et al)(26)
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the elevated kisspeptin levels were localised to the ARC or 
infundibular nucleus.(44,45,52,71,73,87) Gonadectomised Kiss1r and 
Kiss1 knockout mice demonstrated similar behaviour.(31,91,92) 
Kisspeptin production in the ARC was shown to be reduced by 
sex steroid administration in animal studies.(44,52,70,87)

Positive feedback regulation
Oestrogen exerts positive feedback on kisspeptin neurons in the 
AVPV in animals. This effect is also mediated via ERα,(44,45,93,94) 
and may account for the LH surge in the menstrual cycle. The 
evidence supporting this includes the fall in kisspeptin level 
in gonadectomised animals, which was more pronounced in 
females.(44,45) Secondly, AVPV kisspeptin levels rose prior to the 
LH surge in animals;(41,95) pharmacologic studies confirmed that 
the LH surge was induced by kisspeptins.(96-98) Furthermore, LH 
levels increased with kisspeptin administration in women(99) and 
central infusion of kisspeptin antagonists blocked the LH surge in 
animals.(100,101) Thirdly, lesions in the AVPV prevented the LH surge, 
while oestrogen administration to the AVPV caused it.(96,102-105) 
Lastly, blockage of ERα prevented the LH surge in animals.(44,45,93,94)

Reproductive function and puberty
Kisspeptins assume a key role in reproduction. HH occurs in 
humans and mice with defective KISS1R and Kiss1r.(7,106-109)

Notably, kisspeptins regulate the HPG axis by binding to Kiss1r 
in the hypothalamus, as evidenced by the failure of kisspeptins 
to increase LH or C-fos in the GnRH neurons of Kiss1r knockout 
mice.(7,110)

The maturation of kisspeptin neurons may be responsible 
for puberty, as suggested by the following. Firstly, inactivating 
mutations in KISS1R/Kiss1r,(106-108) and KISS1/Kiss1(64,111) led to 
HH and pubertal failure. Secondly, animal studies demonstrated 
an increase in Kiss1 and Kiss1r in the AVPV and/or ARC at 
puberty;(9,43,52,62,112-117) more kisspeptin neurons also project to 
GnRH neurons.(43,118-120) Thirdly, GnRH response to kisspeptins 
increases after puberty, which is secondary to improved signalling 
efficiency rather than increased receptor density(9) (Fig. 5). Finally, 
exogenous kisspeptins induced precocious puberty in rodents 
and monkeys,(9,54,62,121) and stimulated a GnRH secretion pattern 
resembling puberty,(22,122) while kisspeptin antagonists delayed 
puberty in these animals.(122,123)

Kisspeptins and energy homeostasis
Energy homeostasis and the reproductive system are linked, as 
exemplified by HH occurring in energy-deficient states. Energy-
deprived rats and sheep had reduced Kiss1 mRNA in their 
hypothalami, reduced LH levels and pubertal arrest.(47,124-131) With 
kisspeptin administration, puberty resumed, while gonadotrophin 
and androgen levels normalised.(57,124,125) Interactions between 
kisspeptins and leptin may account for these observations. This 
postulation is supported by the finding that leptin activates GnRH 
neurons.(132) However, GnRH neurons lack leptin receptors, 
while kisspeptin neurons in the ARC express the leptin receptor 
gene.(47,133,134) Additionally, leptin-deficient rats have reduced 
Kiss1 mRNA in their ARC.(133,135) Leptin administration increased 

hypothalamic Kiss1 mRNA in fasted rats(125) and cell models.(129,136) 
It also depolarised kisspeptin neurons in the ARC of rats.(137) 
Therefore, it is likely that leptin activates GnRH neurons via 
stimulation of kisspeptin neurons in the ARC.

OTHER ROLES
Kisspeptin was initially discovered in 1996 as a metastasis 
suppressor(138) and was named metastin.(138,139) Over the last two 
decades, increasing evidence confirmed its unique role. Kisspeptins 
suppress metastasis by restricting the growth of the secondary 
tumour.(140) Binding of kisspeptin to KISS1R/Kiss1r increases 
intracellular calcium and activation of MAPKs, which limits cell 
motility and proliferation.(141) Kisspeptins have been investigated as 
potential treatment targets for melanoma,(142) thyroid cancer,(11) bladder 
cancer,(143) squamous cell carcinoma of the oesophagus,(144) gastric 
cancer,(145) hepatocellular carcinoma(146) and breast cancer.(138,147) 
Further studies may provide positive insights in this field.

POTENTIAL CLINICAL APPLICATIONS
Kisspeptin agonists and antagonists have potential diagnostic 
and therapeutic applications. Kisspeptin agonists may localise 

Fig. 5 Diagrams show (a) kisspeptin (Kp) and gonadotrophin-releasing 
hormone (GnRH) neurons in the prepubertal phase; and (b) increased 
neuron density and signalling efficiency in the peripubertal phase.(25) AVPV: 
anteroventral periventricular nucleus; E: oestrogen; FSH: follicle-stimulating 
hormone; LH: luteinising hormone (Adapted from Pinilla et al)(26)
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lesions in HPG axis dysfunction and can be used to evaluate the 
gonadotrophic potential of infertile individuals. They may also 
be used to treat subjects with subfertility through the stimulation 
of LH to result in ovulation. Kisspeptin antagonists may reveal 
the role of kisspeptins in various physiological and pathological 
states of the HPG axis.(25) As they reduce LH pulse frequency 
and amplitude without affecting basal LH secretion, kisspeptin 
antagonists may be useful as contraceptives in women or in the 
treatment of sex steroid-dependent diseases, such as prostate 
and breast cancer, endometriosis and uterine fibroids.(50,100) 
Furthermore, they may prevent premature luteinisation during 
in vitro fertilisation.(148,149) Lastly, kisspeptins may be used in the 
treatment of metastatic cancers.

CONCLUSION
Kisspeptins play essential roles in reproduction. They are 
involved in in utero sexual development and determine the onset 
of puberty. More importantly, they may be the link between 
energy homeostasis and the reproductive system. After sexual 
maturation, kisspeptins regulate HPG axis function by modulating 
gonadotrophin release. The difference in kisspeptin neuroanatomy 
accounts for sexual dimorphism of the HPG axis between genders. 
Potential clinical uses of kisspeptins include the treatment of 
delayed or precocious puberty, subfertility, downregulation of 
sex steroids in the treatment of sex steroid-dependent tumours, 
contraception and the treatment of metastatic cancers.
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