Question 1. Regarding Baxter’s nerve (inferior calcaneal nerve):
(a) It arises as the first branch of the lateral plantar nerve.
(b) It is a pure motor nerve.
(c) It provides motor innervation to the abductor digiti minimi.
(d) It gives off branches to the calcaneal periosteum.

Question 2. Regarding the clinical features of Baxter’s neuropathy:
(a) It is a compressive neuropathy.
(b) It presents clinically as recalcitrant heel pain together with motor impairment of the abductor digiti minimi.
(c) The clinical features do not overlap with those of plantar fasciitis.
(d) It is estimated to involve 5% of patients suffering from chronic heel pain.

Question 3. Regarding magnetic resonance (MR) imaging of Baxter’s neuropathy:
(a) Identifying denervation changes in the abductor digiti minimi is the imaging hallmark of this condition.
(b) With chronicity, frank muscle atrophy and fatty infiltration develops.
(c) A fluid-sensitive sequence is ideal to assess for chronic denervation changes.
(d) An important role of imaging is detecting commonly associated features such as plantar fasciitis, prominent plantar calcaneal spur and hindfoot deformities.

Question 4. Regarding the management of Baxter’s neuropathy:
(a) The mainstay of treatment consists of conservative measures.
(b) A majority of patients respond well to conservative measures.
(c) Operative treatment is reserved for symptoms that have failed a minimum of three months of conservative measures.
(d) Several studies report excellent outcomes following surgical release of Baxter’s nerve.

Question 5. Regarding the differential diagnosis of chronic heel pain:
(a) Baxter’s neuropathy should be considered if symptoms persist for longer than six months without improvement despite conservative treatment.
(b) Magnetic resonance (MR) imaging or ultrasonography may be employed to confirm the diagnosis of plantar fibromatosis.
(c) Gout is relatively prevalent locally, and urate deposition in the plantar fascia may account for otherwise unexplained recalcitrant heel pain.
(d) In tarsal tunnel syndrome, MR imaging facilitates the detection of compressive lesions within the tarsal tunnel.