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INTRODUCTION
Colorectal cancer (CRC) is the most frequently occurring 
cancer and a leading cause of cancer-related mortality in 
Singapore.(1) Colonoscopy is the reference standard procedure 
for the prevention and diagnosis of CRC and has been shown to 
reduce CRC-related mortality.(2,3) The role of colonoscopy in the 
prevention of CRC lies in the accurate detection and adequate 
resection of colorectal adenomas that are considered premalignant 
and may progress to CRC. A 1% increase in adenoma detection 
rate (ADR) has been shown to reduce interval CRC by 3%.(4) 
The adequacy of resection largely depends on the appropriate 
choice of technique and endoscopic accessories, which, in turn, 
is dependent on the size, morphology, predicted histology and, 
in cases of early cancer, the predicted depth of invasion.(5,6) The 
same factors and adequacy of resection determine the risk of 
recurrence of colorectal adenomas and influence the timing of 
surveillance colonoscopy.(7,8)

Artificial intelligence (AI) comprises several different fields. 
Machine learning and, more specifically, deep learning, in which 
hierarchical representation learning is performed across multiple 
layers of artificial neural networks,(9) is the most extensively 
studied application of AI in medicine.(10) Most research on AI in 
gastroenterology has centred on addressing the unmet needs in 
colonoscopy, with the goal of reducing CRC-related morbidity 
and mortality.(11,12) Position statements and recommendations 
regarding AI in endoscopy have been published, and they serve 
to facilitate and regulate the proliferation of research on the use 
of AI in endoscopy practice.(13-15)

The use of AI in colonoscopy in now a clinical reality, as 
AI systems have received regulatory approval and are now 
commercially available. Robust data in the context of polyp 
and adenoma detection has been published, but research on its 
utility in disease differentiation and quality assurance is ongoing. 
This narrative review article aims to provide a summary of 
current published data and clinical applications of AI-assisted 
colonoscopy. It focuses on areas of unmet needs that are of 

clinical significance and highlights the potential role of AI in 
filling the current gaps in colonoscopy.

LITERATURE SEARCH
A comprehensive literature search was performed in the 
PubMed, Web of Science, MEDLINE and EMBASE electronic 
databases from the inception of the databases up to and including 
5 December 2021. The key search terms used were ‘artificial 
intelligence’ OR ‘deep learning’ OR ‘computer aided detection’ 
OR ‘computer aided diagnosis’ AND ‘colonoscopy’. Electronic 
searches were supplemented with manual searches of references 
of all retrieved studies to identify other relevant publications, 
and only studies published in English were considered for this 
narrative review article.

COMPUTER-AIDED DETECTION FOR 
POLYP DETECTION IN COLONOSCOPY
CRCs detected after a prior colonoscopy and in the interval 
between scheduled surveillance colonoscopies are known as 
interval cancers or post-colonoscopy CRCs (PCCRCs). PCCRCs 
may be due to the biological behaviour of the CRC, or missed or 
incompletely resected adenomas. It is estimated that the incidence 
of interval CRC is as high as 3.5 per 1,000 screened persons.(16) 
An earlier study found that 52% of PCCRCs were attributable to 
probable missed lesions, while 19% of PCCRCs in the study may 
possibly be related to incompletely resected lesions.(17) In a more 
recent study conducted in a national colonoscopy training centre, 
where World Endoscopy Organization (WEO) methodology was 
used to determine and categorise PCCRCs, it was deemed that 
85% of CRC cases after a negative colonoscopy were due to 
possible missed lesions according to the WEO criteria.(18) Zhao 
et al conducted a meta-analysis of more than 15,000 tandem 
colonoscopies and found that the adenoma miss rate (AMR) was 
26% (95% confidence interval [CI] 23%–30%).(19)

Although AMR may be influenced by several factors, 
an important determinant of AMR is the endoscopist,(20,21) as 
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an inability to maintain a sustained level of alertness during 
colonoscopy owing to distraction and fatigue may result in a 
polyp being missed despite it being visible on the monitor. The 
inclusion of nurses and endoscopy trainees during colonoscopy 
has been shown to increase ADR, as they act as an independent 
‘second reader’ to the endoscopist.(22,23) Computer-aided detection 
(CADe) functions as an automated second reader, but without the 
inherent problems of distraction and fatigue that may affect the 
performance of the endoscopist and the human second reader.

In a meta-analysis(24) consisting of five randomised controlled 
trials (RCTs)(25-29) with 4,354 patients, the pooled ADR was 
significantly higher in the CADe group than in the control group 
(36.6% vs 25.2%, relative risk [RR] 1.44, 95% CI 1.27–1.62; 
p < 0.01), with both groups using high-definition white light 
endoscopes. There was no significant difference in the withdrawal 
times between the groups in the individual trials, which eliminated 
the possibility of withdrawal time acting as a confounder for the 
efficacy of the CADe systems in increasing ADR. However, it 
must be noted that the increase in ADR with CADe was almost 
entirely due to the increased detection of diminutive (< 5 mm) 
adenomas, with only one study(27) showing an improvement 
in detection of small (6–9 mm) adenomas (17.2% vs. 12.7%; 
p < 0.05) and none of the studies showing a difference in the 
detection of advanced adenomas > 10 mm. Up to 90% of polyps 
detected during colonoscopy are diminutive and small in size, 
and the rates of progression of these lesions to CRC are thought 
to be low.(30) A recently conducted large-scale, propensity score-
matched, single-centre prospective study on 1,836 patients 
in Japan(31) similarly showed an increase in ADR with CADe 
compared to controls (26.4% vs. 19.9%). However, most of this 
increase in ADR was for diminutive polyps, with no significant 
increase observed in detection of advanced neoplasia (3.7% vs. 
2.9%, respectively). This data is consistent with prior publications 
related to polyp size and miss rate. A systematic review by van Rijn 
et al examined miss rates based on the size of the polyp.(32) The 
AMR for adenomas > 10 mm, 5–10 mm and 1–5 mm was 2.1% 
(95% CI 0.3%–7.3%), 13% (95% CI 8.0%–18%) and 26% (95% CI 
27%–35%), respectively. Although small polyps are usually benign 
and do not progress, about 6% of such polyps have been shown 
to progress to advanced adenomas over time.(30) Small adenomas 
have also been shown to harbour foci of high-grade dysplasia or 
intramucosal cancer.(33) The recommended surveillance interval 
following colonoscopy and endoscopic resection of colonic 
adenomas is 1–10 years, based on the numbers of adenomas, as 
well as the histology.(7) Hence, small adenomas cannot be simply 
dismissed and are of potential clinical relevance. Apart from 
size, a flat or mildly elevated polyp morphology, such as in the 
context of serrated polyps, has also been implicated as a factor for 
missed lesions.(19) CADe has been demonstrated to increase the 
detection of adenomas of both flat (RR 1.78, 95% CI 1.47–2.15) 
and polypoid morphology (RR 1.54, 95% CI 1.40–1.68).(24)

Livovsky et al(34) studied the Detection of Elusive Polyps 
(DEEP2) polyp detection system, specifically looking at the 
performance of CADe in detecting elusive polyps, which were 
divided into fleeting and subtle polyps in the study. Fleeting 

polyps were defined as polyps appearing in the field of view (FOV) 
for ≤ 5 seconds, while subtle polyps were those missed initially 
by the endoscopist and offline independent gastroenterologists 
who were reviewing recorded videos of the colonoscopy for 
annotation purposes. The study found that when polyps appeared 
in the FOV for < 5 seconds, the sensitivity of DEEP2 for detection 
was 88.5% (95% CI 84.6%–92.4%), compared to 31.7% (95% 
CI 26.0%–37.5%) for the endoscopist (p < 0.01). The difference 
in sensitivity was 84.9% (95% CI 79.3%–90.5%) versus 18.9% 
(95% CI 12.8%–24.9%), respectively, when the FOV was adjusted 
to < 2 seconds. The study also showed that DEEP2 was able to 
detect an average of 0.22 subtle polyps per sequence.

Tandem colonoscopy studies on CADe shed some light into 
its impact on AMR. In a prospective tandem colonoscopy study 
conducted by Wang et al,(35) patients were randomly assigned 
to colonoscopy with or without CADe, which was immediately 
followed by the other procedure. The AMR was significantly lower 
in the group that underwent colonoscopy with CADe compared 
with routine colonoscopy as the first procedure (13.9% vs. 40.0%; 
p < 0.0001). This result was consistent regardless of the segment 
of the colon examined. The CADeT-CS Trial(36) was a prospective, 
multicentre, single-blind, randomised tandem colonoscopy study 
conducted in a United States population, which also showed a 
decrease in AMR in the CADe-first group compared to the high-
definition white light group (20.12% vs. 31.25%; odds ratio [OR] 
1.8048, 95% CI 1.0780–3.0217; p = 0.0247). In another study 
by Lui et al,(37) the colon was divided into different segments 
for withdrawal and the endoscopist was blinded to the CADe 
output, which was displayed on a separate monitor. Unblinding 
of AI results for the endoscopist was provided by an independent 
viewer after each colonic segment was examined. Using this 
method, the total number of polyps and adenomas detected 
increased by 32.1% and 23.6%, respectively. An example of 
CADe in real-time colonoscopy is shown in Fig. 1.

Despite the apparent advantages of CADe in increasing polyp 
detection and reducing AMR, AI systems also suffer from the same 
limitations as expert endoscopists. Polyps that are not visible 

Fig. 1 Colonoscopy image shows the use of computer-aided detection, in 
which the polyp is highlighted in a bounding box displayed in real time on 
the endoscopy monitor.
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on the endoscopy monitor will be ‘invisible’ to polyp detection 
systems. This could be due to being hidden behind mucosal folds 
or concealed by poor bowel preparation. In a study that evaluated 
false detections with CADe in colonoscopy,(38) blurry images 
were found to result in distorted polyp texture and were one of 
the reasons for false negative detections. These false negative 
detections also occurred when polyps approached the corner of 
a frame just before appearing or disappearing from the FOV. In 
addition, false positive detections increase the amount of visual 
distraction experienced by the endoscopist. The impact of this 
is not fully known, as the majority of early studies on CADe do 
not explicitly report or analyse false positive detections. There 
has been an effort to define the false positive duration of a frame 
before it should be considered a false positive detection,(39) but 
this has not been adequately studied and no consensus has been 
reached on an acceptable definition.

COMPUTER-AIDED DIAGNOSIS FOR 
POLYP CHARACTERISATION DURING 
COLONOSCOPY
Various polyp classification systems have been developed for 
in vivo prediction of polyp histology before resection and formal 
histological analysis. Also known as an optical biopsy, these 
systems exploit the different appearances of polyp surfaces and 
vessels under narrow-band wavelengths of light(40) or when stained 
with dyes(41) to determine their neoplastic potential and estimated 
depth of invasion, and are collectively known as image-enhanced 
endoscopy (IEE). Narrow-band imaging (NBI) and blue laser 
imaging (BLI) are the most extensively studied examples of IEE 
utilising narrowed wavelengths of white light. As discussed in the 
introduction, the predicted histology of colorectal polyps aids the 
endoscopist in selecting the optimal method of resection. The 
optical prediction of polyp histology is also a crucial element of 
the ‘resect and discard’(42,43) and ‘detect and leave’(44) strategies, 
which can make endoscopic examinations and treatment of 
diminutive colorectal polyps more cost-effective, provided these 
satisfy the criteria of the American Society for Gastrointestinal 
Endoscopy (ASGE) Preservation and Incorporation of Valuable 
endoscopic Innovations (PIVI) recommendations. This requires 
that in the context of suspected rectosigmoid hyperplastic 
polyps that are 5 mm or smaller, the technology should provide 
a negative predictive value (NPV) greater than 90%, when used 
with high confidence, for adenomatous histology.(45) Examples 
of IEE classification include the Kudo pit pattern,(41) Sano,(46) NBI 
International Colorectal Endoscopic,(47) Japan NBI Expert Team(48) 
and BLI Adenoma Serrated International Classification(49) systems.

The use of IEE in clinical practice is dependent on the 
availability of equipment, the experience of the endoscopist 
and access to structured training. While the latter has been 
shown to improve the accuracy of optical biopsy with IEE,(50) 
there is still a wide gap in accessibility to proper equipment and 
training depending on the resources available. This has resulted 
in moderate interobserver variability(51,52) and modest results(53) 
where accuracy of IEE for prediction of polyp histology has been 
studied in clinical practice.

Most of the early studies evaluating computed-aided diagnosis 
(CADx) were retrospective in nature and tested deep learning 
models on still images or video recordings of polyps.(54-58) 
In contrast, few prospective studies on CADx in real-time 
colonoscopy are currently available. In a study comparing 
magnifying NBI and a CADx support vector machine in 118 
colorectal lesions, Kominami et al(59) were able to demonstrate a 
concordance between the endoscopic diagnosis and CADx output 
of 97.5%. The accuracy, sensitivity, specificity, positive predictive 
value (PPV) and NPV of the CADx system’s output were 94.9%, 
95.9%, 93.3%, 95.9% and 93.3%, respectively. Song et al(60) used 
a deep learning model to classify near-focus NBI images of polyps 
in real-time. The study showed that the CADx system was able 
to classify polyps as serrated polyps, benign adenomas/mucosal/
superficial submucosal cancer and deep submucosal cancer, 
with areas under the receiver operating characteristic curve 
(AUROC) of 0.93–0.95, 0.86–0.89 and 0.89–0.91, respectively. 
CADx had an overall diagnostic accuracy of 81.3%–82.4%, 
which outperformed trainee endoscopists and was comparable 
with that of expert endoscopists. When CADx was used to assist 
trainee endoscopists, an increase in agreement was observed 
between true and predicted polyp histology (kappa improved 
from 0.368 to 0.655), while the diagnostic accuracy increased 
from 63.8%–71.8% to 82.7%–84.2%. A meta-analysis(61) of 18 
studies (three prospective, 15 retrospective, total of 7,680 polyp 
images) on prediction of polyp histology using CADx models 
showed a pooled sensitivity, specificity and AUROC of 92.3% 
(95% CI 88.8%–94.9%), 89.8% (95% CI 85.3%–93.0%) and 
0.96 (95% CI 0.95–0.98), respectively. Six of the included studies 
compared the performance of CADx with non-expert endoscopists 
and showed that CADx was significantly better than non-expert 
endoscopists in the accurate prediction of polyp histology (AUC 
0.97 vs 0.90, respectively; p < 0.01). Fig. 2 is an example of 
CADx with corresponding endoscopic and histology images.

CADx has also been studied with endocytoscopy, which 
utilises specialised contact light microscopy colonoscopes with 
520× optical zoom capability and mucosal staining techniques 
to visualise cellular structures. A single-centre, open-label, 
prospective study(62) showed that endocytoscopy with CADx had 
an NPV for diminutive rectosigmoid adenomas of 93.7%–96.4% 
with methylene blue staining and 95.2%–96.5% with NBI, which 
satisfied the ‘detect and leave’ threshold of 90% recommended 
by the ASGE PIVI.(45) Rodriguez-Diaz et al(63) used a CADx model 
that simultaneously displayed elements informing polyp histology 
assessment in each frame on the endoscopy monitor. The model 
output was a detailed spatial histology heat map using varying 
shades of red, green and yellow to represent high-confidence 
neoplastic, high-confidence non-neoplastic and low-confidence 
assessments, respectively. This augmented visualisation of the 
polyp in real-time enabled the endoscopist to assess the prediction 
made and use the spatial information to guide decisions on 
management of the polyp in question. The CADx model was 
tested on 254 polyps, with a sensitivity, specificity and NPV of 
96%, 84% and 91%, respectively, in distinguishing neoplastic 
from non-neoplastic polyps of all sizes.
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AI-ASSISTED QUALITY ASSURANCE IN 
COLONOSCOPY
Owing to its unique role in the prevention of CRC, strict quality 
indices have been recommended to ensure that all screening 
colonoscopies are of high quality.(2,3) These quality indices include 
not only the ADR of the endoscopist but also the withdrawal time,(64) 
caecal intubation rate and adequacy of bowel preparation.(65,66) 
Despite being extensively studied, quality indices in performance 
and reporting of colonoscopy may not be adhered to because of 
lack of real-time feedback, training and enforcement.(67,68) For 
example, most endoscopists are unaware of their individual ADR. 
This could be due to a variety of factors including the manual 
nature of collecting and combining information from colonoscopy 
and histology reports, which are recorded on separate electronic 
systems or in hard copy in virtually all centres, as well as lack of 
regular and structured feedback on the individual endoscopist’s 
ADR. A recent study conducted in Japan(69) showed that a group 
meeting and individual interview with the director to communicate 
endoscopist performance in ADR could increase the mean ADR 
significantly from 40.8% to 50.8%. This example highlights how 
feedback on the individual quality indices in colonoscopy could 
improve the endoscopist’s performance in colonoscopy.

Gong et al(70) conducted an RCT of 704 patients using the 
ENDOANGEL system, which provided automated monitoring of 
withdrawal time and speed, and adequacy of mucosal exposure. 
The information was relayed to the endoscopist in real time and 
resulted in a significantly longer mean withdrawal time in the 
ENDOANGEL group compared to the control group (6.38 minutes 
vs. 4.76 minutes, respectively; p < 0.001). The ADR in the 
ENDOANGEL group was significantly higher (16% vs. 8%), and 
this is currently the only RCT to show an increased detection rate 
in adenomas > 10 mm in size (10/355 vs. 1/349, respectively; OR 
9.50, 95% CI 1.19–75.75; p = 0.034). The use of an automatic 
quality control system (AQCS) was also shown to improve mean 
withdrawal times from 5.68 minutes to 7.03 minutes (p < 0.001) in 
a study by Su et al.(28) The AQCS generated audio prompts for the 
endoscopist to slow down the speed of withdrawal when unstable 
or blurry frames were displayed, or when a colonic segment had 
a suboptimal bowel preparation with Boston Bowel Preparation 
Scale (BBPS) < 2. Using this automated system, the rate of bowel 

preparation was also increased (87.3% vs. 80.6%, p = 0.023). 
The AQCS was combined with CADe in the study and showed 
an increase in ADR (28.9% vs. 16.5%, p < 0.001). However, it 
should be noted that in both these studies, the control groups 
did not meet the minimum standard for withdrawal time and 
ADR (Table I). The ADR in the ENDOANGEL group in the former 
study was also far below what is expected.(2,3) Hence, the role of 
these systems in centres and among experienced endoscopists 
where such quality indices are already adhered to is unclear.

The use of deep learning for automatic calculation of the 
BBPS in colonoscopy was also examined in a prospective 
observational study.(71,72) The automatic BBPS (e-BBPS) system was 
based on existing definitions of adequacy of bowel preparation 
spelled out in the BBPS. It was prospectively validated in 
616 patients undergoing screening colonoscopy and showed a 
significant inverse correlation between the e-BBBPS score and 
ADR (Spearman’s rank correlation −0.976; p < 0.01). Based 
on the results of the study, a threshold e-BBPS score of 3 was 
calculated to guarantee an ADR of more than 25%. Using this 
threshold, patients with an e-BBPS score of ≤ 3 had a significantly 
higher ADR than patients with e-BBPS > 3 (28.03% vs. 15.93%; 
p < 0.001). The study showed that a validated AI system based on 
deep learning can supplement the endoscopist with objective and 
precise information about bowel preparation that is reproducible 
and more refined than current visual estimations of bowel 
preparation by the endoscopist.

Fig. 2 (a) Colonoscopy image shows the use computer-aided diagnosis to predict a neoplastic polyp. (b) Photomicrograph shows a tubular adenoma 
with low-grade dysplasia (Haematoxylin & eosin, original magnification × 40).

2a 2b

Table I. Examples of quality indicators in colonoscopy.

Key performance measure Standard

ADR (percentage of 
colonoscopies with at least one 
adenoma detected)

Minimum standard: ≥ 25%

Rate of adequate bowel 
preparation (assessed with a 
validated scale such as BBPS)

Minimum standard: ≥ 90%
Target standard: ≥ 95%

Caecal intubation rate 
(indication of completeness of 
procedure)

Minimum standard ≥ 90%
Target standard ≥ 95%

Withdrawal time Minimum standard: mean 6 min
Target standard: mean 10 min

ADR: adenoma detection rate; BBPS: Boston Bowel Preparation Scale
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Yao et al examined the role of combined CADe and computer-
aided quality improvement system (CAQ) during colonoscopy 
in improving ADR.(73) Patients undergoing colonoscopy were 
randomised to four groups: (control: 271, CADe: 268, CAQ: 269 
and CADe plus CAQ [COMBO]: 268). The primary outcome 
was ADR. The average ADR in the control, CADe, CAQ and 
COMBO groups was 14.76% (95% CI 10.54%–18.98%), 21.27% 
(95% CI 16.37%–26.17%), 24.54% (95% CI 19.39%–29.68%) 
and 30.6% (95% CI 25.08%–36.11%), respectively. The ADR 
was significantly higher in the COMBO group than in the CADe 
group (30.60% vs. 21.27%; p = 0.024), but the difference was 
not significantly different when compared to the CAQ group 
(30.60% vs. 24.54%; p = 0.213).

To overcome the inefficient and time-consuming nature 
of manual data retrieval and tracking of patients for post-
polypectomy colonoscopy surveillance, a pipeline utilising 
natural language processing (NLP) techniques was developed 
to automatically extract and analyse information from free-text 
colonoscopy and pathology reports.(74) The pipeline consisted 
of three modules. The first module was for polyp property 
extraction, where rule-based methods and statistical classifiers 
were used to extract relevant information about polyps from 
colonoscopy and histology reports. In the polyp grouping 
module, extracted polyp properties such as morphology, 
location and size were associated with their unique polyp 
mentions. Lastly, the surveillance interval classification module 
integrated the information to classify patients into one of six 
risk categories based on the recommended post-colonoscopy 
surveillance intervals by the United States Multi-Society Task 
Force on CRC.(7) The pipeline was evaluated on an independent 
test set of 200 reports (100 each from colonoscopy and histology) 
and achieved an overall accuracy of 92% in assigning the 
recommended interval for surveillance colonoscopy. The study 
showed that NLP techniques can be used in colonoscopy to 
develop a pipeline for automated assignment of surveillance 
intervals, which has traditionally been a very tedious and 
inefficient process.

OTHER EXAMPLES OF RESEARCH IN THE 
USE OF AI IN COLONOSCOPY
The same principles of objectivity and reproducibility with 
automated systems discussed in this review article can also 
be applied to other areas of colonoscopy. For example, 
colonoscopy is an essential tool in the diagnosis and assessment 
of severity of inflammatory bowel disease (IBD). However, 
endoscopic assessment has inherent subjectivity, which is further 
compounded by differences in training, volume of cases seen 
and the level of expertise of the individual endoscopist. In this 
setting, AI systems have been studied to more reliably diagnose 
and assess disease severity in IBD.(75-77)

Similarly, the estimation of CRC depth and risk of lymph 
node metastasis is crucial in determining whether endoscopic 
resection techniques such as endoscopic submucosal dissection 
and endoscopic mucosal resection are appropriate to achieve 
curative resection, which has lower associated morbidity and 

mortality compared to surgical resection.(78-81) Accurate prediction 
of depth of CRC invasion in real time, as well as determination of 
risk of lymph node metastasis in T1 CRC, can be very challenging 
for clinicians.(82-84) It is, therefore, unsurprising that AI is also being 
studied in these areas.(85-87)

INTEGRATING AI-ASSISTED 
COLONOSCOPY INTO CURRENT CLINICAL 
PRACTICE
Current commercially available AI systems in Singapore either 
have the CADe function alone or CADe combined with CADx 
functions. The current CADx function differentiates between 
hyperplastic and neoplastic polyps. There is no further stratification 
in terms of severity of dysplasia or depth of invasion in the context 
of cancer. Therefore, it would appear that the current key utility 
of AI-assisted colonoscopy is its role in increasing ADR, thereby 
facilitating diagnosis and endoscopic resection of adenomas 
that may otherwise be missed. This is especially useful for less 
experienced endoscopists performing screening colonoscopy. 
Admittedly, there is no direct data on the longer-term impact of 
CADe in terms of reduction in CRC incidence and CRC-related 
mortality, but these are reasonable assumptions to extrapolate from 
past data related to screening colonoscopy.(4) ADR is a function of 
different components during the process of colonoscopy, and it is 
important and illustrative to dissect these individual components 
in order to better appreciate how to improve ADR using different 
approaches. Excellent mucosa surface visibility is extremely 
important for adenoma detection, and it depends on the adequacy 
of bowel preparation, and irrigation and suctioning during the 
process of colonoscopy. Another crucial aspect is meticulous 
examination of the entire visible colonic mucosa (careful slow 
withdrawal of the endoscope, adequate air insufflation, pressing 
down and looking behind folds, and re-examination of flexures). 
The third vital element is being aware that premalignant lesions 
such as sessile serrated adenomas may be easily missed owing to 
their subtle endoscopic features, and being trained to recognise 
such subtle features and detect these flat subtle lesions on the 
exposed mucosa surface. Different endoscopic tools are available 
to improve adenoma detection, focusing on different aspects of 
the examination process during colonoscopy. These include 
devices attached to the colonoscopy tip to flatten mucosal folds 
in order to expose adenomas hidden by folds; contrast dye-based 
IEE techniques such as indigo carmine chromoendoscopy, which 
accentuates mucosal surface contours to highlight flat lesions; 
electronic IEE techniques such as NBI and BLI that accentuate 
mucosal surface details to facilitate recognition of subtle mucosal 
surface abnormalities to improve detection, and with additional 
magnification, also allow characterisation and diagnosis; and 
endoscopy systems such as full-spectrum endoscopy (FUSE) that 
increase the extent of the endoscopic view.(88) CADe draws the 
endoscopist’s attention to the presence of a polyp when it appears 
in the endoscopic view. However, it will not be able to detect 
polyps in unexposed areas, such as when they are hidden behind 
mucosal folds or obscured owing to suboptimal bowel preparation, 
and when the colonoscope withdrawal speed is too fast.
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A recent network meta-analysis of 50 RCTs comprising 34,445 
participants compared CADe with high-definition white light 
endoscopy, IEE techniques, and techniques that increased mucosal 
visualisation such as distal attachments and FUSE.(89) CADe was 
ranked as the superior technique for adenoma detection. Cross-
comparisons of CADe with other imaging techniques showed 
a significant increase in the ADR with CADe versus increased 
mucosal visualisation systems (OR 1.54 [95% CI 1.22–1.94]; low 
certainty of evidence) and with CADe versus chromoendoscopy 
(OR 1.45 [95% CI 1.14–1.85]; moderate certainty of evidence). 
CADe also seemed to be the superior strategy for detection of 
sessile serrated lesions (with moderate confidence in hierarchical 
ranking), although no significant increase in the sessile serrated 
lesion detection rate was observed (OR 1.37 [95% CI 0.65–2.88]).

CONCLUSION
The role of AI-assisted colonoscopy is expanding, with data 
and clinical applications emerging most rapidly in the fields of 
polyp detection, prediction of polyp histology and automated 
quality assurance. The objectivity and reproducibility afforded 
by these automated systems will see a further expansion of data 
from AI-assisted colonoscopy in other areas of colonoscopy and 
newer clinical applications. We should harness advances in 
technology to improve our practice. However, we should also 
keep in mind that technology complements but does not replace 
the fundamentals of quality colonoscopy.

REFERENCES
1. National Registry of Diseases Office. Singapore Cancer Registry Annual Report 

2018. Available at: https://www.nrdo.gov.sg/docs/librariesprovider3/default-
document-library/scr-annual-report-2018.pdf. Accessed March 31, 2021.

2. Kaminski MF, Thomas-Gibson S, Bugajski M, et al. Performance measures 
for lower gastrointestinal endoscopy: a European Society of Gastrointestinal 
Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2017; 49:378-97.

3. Rex DK, Schoenfeld PS, Cohen J, et al. Quality indicators for colonoscopy. 
Gastrointest Endosc 2015; 81:31-53.

4. Corley DA, Levin TR, Doubeni CA. Adenoma detection rate and risk of colorectal 
cancer and death. N Engl J Med 2014; 370:2541.

5. Kaltenbach T, Anderson JC, Burke CA, et al. Endoscopic removal of colorectal 
lesions-recommendations by the US Multi-Society Task Force on Colorectal 
Cancer. Gastroenterology 2020; 158:1095-1129.

6. Ang TL, Lim JF, Chua TS, et al. Clinical guidance on endoscopic management 
of colonic polyps in Singapore. Singapore Med J 2020. https://doi.org/10.11622/
smedj.2020108. [Epub ahead of print]

7. Gupta S, Lieberman D, Anderson JC, et al. Recommendations for follow-up after 
colonoscopy and polypectomy: a consensus update by the US Multi-Society 
Task Force on Colorectal Cancer. Gastrointest Endosc 2020; 91:463-85.e5.

8. Hassan C, Antonelli G, Dumonceau JM, et al. Post-polypectomy colonoscopy 
surveillance: European Society of Gastrointestinal Endoscopy (ESGE) 
Guideline - Update 2020. Endoscopy 2020; 52:687-700.

9. Shalev-Shwartz S. Understanding Machine Learning: from Theory to Algorithms. 
New York: Cambridge University Press, 2014.

10. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. 
Gastrointest Endosc 2020; 92:807-12.

11. Li JW, Ang TL. Colonoscopy and artificial intelligence: Bridging the gap or a 
gap needing to be bridged? Artif Intell Gastrointest Endosc 2021; 2:36-49.

12. Chen H, Sung JJY. Potentials of AI in medical image analysis in Gastroenterology 
and Hepatology. J Gastroenterol Hepatol 2021; 36:31-8.

13. Ahmad OF, Mori Y, Misawa M, et al. Establishing key research questions for 
the implementation of artificial intelligence in colonoscopy: a modified Delphi 
method. Endoscopy 2021; 53:893-901.

14. Berzin TM, Parasa S, Wallace MB, et al. Position statement on priorities for 
artificial intelligence in GI endoscopy: a report by the ASGE Task Force. 
Gastrointest Endosc 2020; 92:951-9.

15. Bisschops R, East JE, Hassan C, et al. Advanced imaging for detection and 
differentiation of colorectal neoplasia: European Society of Gastrointestinal 

Endoscopy (ESGE) Guideline - Update 2019. Endoscopy 2019; 51:1155-79.
16. Pohl H, Robertson DJ. Colorectal cancers detected after colonoscopy frequently 

result from missed lesions. Clin Gastroenterol Hepatol 2010; 8:858-64.
17. Robertson DJ, Lieberman DA, Winawer SJ, et al. Colorectal cancers soon after 

colonoscopy: a pooled multicohort analysis. Gut 2014; 63:949-56.
18. Anderson R, Burr NE, Valori R. Causes of post-colonoscopy colorectal cancers 

based on World Endoscopy Organization System of Analysis. Gastroenterology 
2020; 158:1287-99.e2.

19. Zhao S, Wang S, Pan P, et al. Magnitude, risk factors, and factors associated 
with adenoma miss rate of tandem colonoscopy: a systematic review and meta-
analysis. Gastroenterology 2019; 156:1661-74.e11.

20. Rex DK, Cutler CS, Lemmel GT, et al. Colonoscopic miss rates of adenomas 
determined by back-to-back colonoscopies. Gastroenterology 1997; 112:24-8.

21. Leufkens AM, van Oijen MGH, Vleggaar FP, Siersema PD. Factors influencing 
the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy 2012; 
44:470-5.

22. Lee CK, Park DI, Lee SH, et al. Participation by experienced endoscopy nurses 
increases the detection rate of colon polyps during a screening colonoscopy: a 
multicenter, prospective, randomized study. Gastrointest Endosc 2011; 74:1094-
102.

23. Buchner AM, Shahid MW, Heckman MG, et al. Trainee participation is 
associated with increased small adenoma detection. Gastrointest Endosc 2011; 
73:1223-31.

24. Hassan C, Spadaccini M, Iannone A, et al. Performance of artificial intelligence 
in colonoscopy for adenoma and polyp detection: a systematic review and 
meta-analysis. Gastrointest Endosc 2021; 93:77-85.e6.

25. Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection 
system increases colonoscopic polyp and adenoma detection rates: a prospective 
randomised controlled study. Gut 2019; 68:1813-9.

26. Wang P, Liu X, Berzin TM, et al. Effect of a deep-learning computer-aided 
detection system on adenoma detection during colonoscopy (CADe-DB trial): a 
double-blind randomised study. Lancet Gastroenterol Hepatol 2020; 5:343-51.

27. Repici A, Badalamenti M, Maselli R, et al. Efficacy of real-time computer-aided 
detection of colorectal neoplasia in a randomized trial. Gastroenterology 2020; 
159:512-20.e7.

28. Su JR, Li Z, Shao XJ, et al. Impact of a real-time automatic quality control 
system on colorectal polyp and adenoma detection: a prospective randomized 
controlled study (with videos). Gastrointest Endosc 2020; 91:415-24.e4.

29. Liu WN, Zhang YY, Bian XQ, et al. Study on detection rate of polyps and 
adenomas in artificial-intelligence-aided colonoscopy. Saudi J Gastroenterol 
2020; 26:13-9.

30. Vleugels JLA, Hazewinkel Y, Fockens P, Dekker E. Natural history of diminutive 
and small colorectal polyps: a systematic literature review. Gastrointest Endosc 
2017; 85:1169-76.e1.

31. Ishiyama M, Kudo SE, Misawa M, et al. Impact of the clinical use of artificial 
intelligence-assisted neoplasia detection for colonoscopy: a large-scale 
prospective, propensity score-matched study (with video). Gastrointest Endosc 
2022; 95:155-63.

32. van Rijn JC, Reitsma JB, Stoker J, et al. Polyp miss rate determined by tandem 
colonoscopy: a systematic review. Am J Gastroenterol 2006; 101:343-50.

33. Turner KO, Genta RM, Sonnenberg A. Lesions of all types exist in colon polyps 
of all sizes. Am J Gastroenterol 2018; 113:303-6.

34. Livovsky DM, Veikherman D, Golany T, et al. Detection of elusive polyps using 
a large-scale artificial intelligence system (with videos). Gastrointest Endosc 
2021; 94:1099-109.

35. Wang P, Liu P, Glissen Brown JR, et al. Lower adenoma miss rate of computer-
aided detection-assisted colonoscopy vs routine white-light colonoscopy in a 
prospective tandem study. Gastroenterology 2020; 159:1252-61.e5.

36. Glissen Brown JR, Mansour NM, Wang P, et al. Deep learning computer-aided 
polyp detection reduces adenoma miss rate: a United States Multi-center 
Randomized Tandem Colonoscopy Study (CADeT-CS Trial). Clin Gastroenterol 
Hepatol 2021; S1542-3565(21)00973-3.

37. Lui TKL, Hui CKY, Tsui VWM, et al. New insights on missed colonic lesions 
during colonoscopy through artificial intelligence-assisted real-time detection 
(with video). Gastrointest Endosc 2021; 93:193-200.e1.

38. Li JW, Chia T, Fock KM, et al. Artificial intelligence and polyp detection in 
colonoscopy: Use of a single neural network to achieve rapid polyp localization 
for clinical use. J Gastroenterol Hepatol 2021; 36:3298-307.

39. Holzwanger EA, Bilal M, Glissen Brown JR, et al. Benchmarking definitions of 
false-positive alerts during computer-aided polyp detection in colonoscopy. 
Endoscopy 2021; 53:937-40.

40. Li JW, Ang TL. Narrow-Band Imaging. In: Chiu PWY, Sano Y, Uedo N, Singh R, 
eds. Endoscopy in Early Gastrointestinal Cancers, Volume 1: Diagnosis. 
Singapore: Springer Singapore, 2021: 111-9.

41. Kudo S, Tamura S, Nakajima T, et al. Diagnosis of colorectal tumorous lesions 
by magnifying endoscopy. Gastrointest Endosc 1996; 44:8-14.

42. Kandel P, Wallace MB. Should we resect and discard low risk diminutive colon 
polyps. Clin Endosc 2019; 52:239-46.

43. von Renteln D, Kaltenbach T, Rastogi A, et al. Simplifying resect and discard 



124

Review Art ic le

strategies for real-time assessment of diminutive colorectal polyps. Clin 
Gastroenterol Hepatol 2018; 16:706-14.

44. Neumann H, Neumann Sen H, Vieth M, et al. Leaving colorectal polyps in 
place can be achieved with high accuracy using blue light imaging (BLI). United 
European Gastroenterol J 2018; 6:1099-105.

45. Rex DK, Kahi C, O’Brien M, et al. The American Society for Gastrointestinal 
Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic 
Innovations) on real-time endoscopic assessment of the histology of diminutive 
colorectal polyps. Gastrointest Endosc 2011; 73:419-22.

46. Sano Y, Ikematsu H, Fu KI, et al. Meshed capillary vessels by use of narrow-
band imaging for differential diagnosis of small colorectal polyps. Gastrointest 
Endosc 2009; 69:278-83.

47. Rex DK. Narrow-band imaging without optical magnification for histologic 
analysis of colorectal polyps. Gastroenterology 2009; 136:1174-81.

48. Sano Y, Tanaka S, Kudo SE, et al. Narrow-band imaging (NBI) magnifying 
endoscopic classification of colorectal tumors proposed by the Japan NBI Expert 
Team. Dig Endosc 2016; 28:526-33.

49. Desai M, Kennedy K, Aihara H, et al. External validation of blue light imaging 
(BLI) criteria for the optical characterization of colorectal polyps by endoscopy 
experts. J Gastroenterol Hepatol 2021; 36:2728-34.

50. Smith SCL, Siau K, Cannatelli R, et al. Training methods in optical diagnosis and 
characterization of colorectal polyps: a systematic review and meta-analysis. 
Endosc Int Open 2021; 9:E716-26.

51. Kobayashi S, Yamada M, Takamaru H, et al. Diagnostic yield of the Japan 
NBI Expert Team (JNET) classification for endoscopic diagnosis of superficial 
colorectal neoplasms in a large-scale clinical practice database. United European 
Gastroenterol J 2019; 7:914-23.

52. Repici A, Ciscato C, Correale L, et al. Narrow-band Imaging International 
Colorectal Endoscopic Classification to predict polyp histology: REDEFINE 
study (with videos). Gastrointest Endosc 2016; 84:479-86.e3.

53. Klare P, Haller B, Wormbt S, et al. Narrow-band imaging vs. high definition white 
light for optical diagnosis of small colorectal polyps: a randomized multicenter 
trial. Endoscopy 2016; 48:909-15.

54. Byrne MF, Chapados N, Soudan F, et al. Real-time differentiation of adenomatous 
and hyperplastic diminutive colorectal polyps during analysis of unaltered videos 
of standard colonoscopy using a deep learning model. Gut 2019; 68:94-100.

55. Kudo SE, Misawa M, Mori Y, et al. Artificial intelligence-assisted system improves 
endoscopic identification of colorectal neoplasms. Clin Gastroenterol Hepatol 
2020; 18:1874-81.e2.

56. Takeda K, Kudo SE, Mori Y, et al. Accuracy of diagnosing invasive colorectal 
cancer using computer-aided endocytoscopy. Endoscopy 2017; 49:798-802.

57. Tischendorf JJ, Gross S, Winograd R, et al. Computer-aided classification of 
colorectal polyps based on vascular patterns: a pilot study. Endoscopy 2010; 
42:203-7.

58. Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng et al. Accurate classification of 
diminutive colorectal polyps using computer-aided analysis. Gastroenterology 
2018; 154:568-75.

59. Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal 
polyp histology by using a real-time image recognition system and narrow-band 
imaging magnifying colonoscopy. Gastrointest Endosc 2016; 83:643-9.

60. Song EM, Park B, Ha CA, et al. Endoscopic diagnosis and treatment planning 
for colorectal polyps using a deep-learning model. Sci Rep 2020; 10:30.

61. Lui TKL, Guo CG, Leung WK. Accuracy of artificial intelligence on histology 
prediction and detection of colorectal polyps: a systematic review and meta-
analysis. Gastrointest Endosc 2020; 92:11-22.e6.

62. Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of 
artificial intelligence in identification of diminutive polyps during colonoscopy: 
a prospective study. Ann Intern Med 2018; 169:357-66.

63. Rodriguez-Diaz E, Baffy G, Lo WK, et al. Real-time artificial intelligence-based 
histologic classification of colorectal polyps with augmented visualization. 
Gastrointest Endosc 2021; 93:662-70.

64. Shaukat A, Rector TS, Church TR, et al. Longer withdrawal time is associated 
with a reduced incidence of interval cancer after screening colonoscopy. 
Gastroenterology 2015; 149:952-7.

65. Lai EJ, Calderwood AH, Doros G, Fix OK, Jacobson BC. The Boston bowel 
preparation scale: a valid and reliable instrument for colonoscopy-oriented 
research. Gastrointest Endosc 2009; 69(3 Pt 2):620-5.

66. Taveira F, Hassan C, Kaminski MF, et al. The Colon Endoscopic Bubble Scale 
(CEBuS): a two-phase evaluation study. Endoscopy 2022; 54:45-51.

67. Coe SG, Panjala C, Heckman MG, et al. Quality in colonoscopy reporting: an 
assessment of compliance and performance improvement. Dig Liver Dis 2012; 

44:660-4.
68. Leyden JE, Doherty GA, Hanley A, et al. Quality of colonoscopy performance 

among gastroenterology and surgical trainees: a need for common training 
standards for all trainees? Endoscopy 2011; 43:935-40.

69. Toyoshima O, Yoshida S, Nishizawa T, et al. Simple feedback of colonoscopy 
performance improved the number of adenomas per colonoscopy and serrated 
polyp detection rate. Endosc Int Open 2021; 9:E1032-E8.

70. Gong D, Wu L, Zhang J, et al. Detection of colorectal adenomas with a real-
time computer-aided system (ENDOANGEL): a randomised controlled study. 
Lancet Gastroenterol Hepatol 2020; 5:352-61.

71. Zhou J, Wu L, Wan X, et al. A novel artificial intelligence system for the 
assessment of bowel preparation (with video). Gastrointest Endosc 2020; 
91:428-35.e2.

72. Zhou W, Yao L, Wu H, et al. Multi-step validation of a deep learning-based 
system for the quantification of bowel preparation: a prospective, observational 
study. Lancet Digit Health 2021; 3:e697-e706.

73. Yao L, Zhang L, Liu J, et al. Effect of an artificial intelligence-based quality 
improvement system on efficacy of a computer-aided detection system in 
colonoscopy: a four-group parallel study. Endoscopy 2021 Nov 25. https://doi.
org/10.1055/a-1706-6174. [Epub ahead of print]

74. Peterson E, May FP, Kachikian O, et al. Automated identification and assignment 
of colonoscopy surveillance recommendations for individuals with colorectal 
polyps. Gastrointest Endosc 2021; 94:978-87.

75. Maeda Y, Kudo SE, Mori Y, et al. Fully automated diagnostic system with 
artificial intelligence using endocytoscopy to identify the presence of histologic 
inflammation associated with ulcerative colitis (with video). Gastrointest Endosc 
2019; 89:408-15.

76. Stidham RW, Liu W, Bishu S, et al. Performance of a deep learning model 
vs human reviewers in grading endoscopic disease severity of patients with 
ulcerative colitis. JAMA Netw Open 2019; 2:e193963.

77. Takenaka K, Ohtsuka K, Fujii T, et al. Development and validation of a deep 
neural network for accurate evaluation of endoscopic images from patients with 
ulcerative colitis. Gastroenterology 2020; 158:2150-7.

78. Tanaka S, Kashida H, Saito Y, et al. JGES guidelines for colorectal endoscopic 
submucosal dissection/endoscopic mucosal resection. Dig Endosc 2015; 
27:417-34.

79. Pimentel-Nunes P, Dinis-Ribeiro M, Ponchon T, et al. Endoscopic submucosal 
dissection: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. 
Endoscopy 2015; 47:829-54.

80. Li JW, Ang TL, Wang LM, et al. Endoscopic submucosal dissection of colorectal 
neoplasms: an audit of its safety and efficacy in a single tertiary centre in 
Singapore. Singapore Med J 2019; 60:526-31.

81. Baxter NN, Virnig DJ, Rothenberger DA, et al. Lymph node evaluation in 
colorectal cancer patients: a population-based study. J Natl Cancer Inst 2005; 
97:219-25.

82. Backes Y, Schwartz MP, Ter Borg F, et al. Multicentre prospective evaluation of 
real-time optical diagnosis of T1 colorectal cancer in large non-pedunculated 
colorectal polyps using narrow band imaging (the OPTICAL study). Gut 2019; 
68:271-9.

83. Kessels K, Backes Y, Elias SG, et al. Pedunculated morphology of T1 colorectal 
tumors associates with reduced risk of adverse outcome. Clin Gastroenterol 
Hepatol 2019; 17:1112-20.e1.

84. Vermeer NCA, Backes Y, Snijders HS, et al. National cohort study on 
postoperative risks after surgery for submucosal invasive colorectal cancer. BJS 
Open 2019; 3:210-7.

85. Luo X, Wang J, Han Z, et al. Artificial intelligence-enhanced white-light 
colonoscopy with attention guidance predicts colorectal cancer invasion depth. 
Gastrointest Endosc 2021; 94:627-38.e1.

86. Bedrikovetski S, Dudi-Venkata NN, Kroon HM, et al. Artificial intelligence for 
pre-operative lymph node staging in colorectal cancer: a systematic review and 
meta-analysis. BMC Cancer 2021; 21:1058.

87. Kudo SE, Ichimasa K, Villard B, et al. Artificial intelligence system to determine 
risk of T1 colorectal cancer metastasis to lymph node. Gastroenterology 2021; 
160:1075-84.e2.

88. Ang TL, East JE. Image-enhanced endoscopy for detection and diagnosis 
of colonic neoplasia: Time to shift focus. J Gastroenterol Hepatol 2021; 
36:2635-6.

89. Spadaccini M, Iannone A, Maselli R, et al. Computer-aided detection versus 
advanced imaging for detection of colorectal neoplasia: a systematic review 
and network meta-analysis. Lancet Gastroenterol Hepatol 2021; 6:793-802.


