Skip to main content
  • Home
  • Articles
    • Archive from 2022 July
    • Archive 1960 to 2022 June
    • Accepted Articles
    • Published Ahead-of-Print
    • Supplement
  • About
  • For Authors
  • Podcasts

A prospective comparison of chronic primary angle-closure glaucoma versus primary open-angle glaucoma in Singapore

< Back to Listing

Share this Article

Singapore Med J 2013; 54(3): 140-145; http://dx.doi.org/doi:10.11622/smedj.2013049
A prospective comparison of chronic primary angle-closure glaucoma versus primary open-angle glaucoma in Singapore

  • Abstract
  • PDF
  • References

Ngo CS, Aquino MC, Noor S, Loon SC, Sng CC, Gazzard G, Wong WL, Chew PT
Correspondence: Dr Cheryl SF Ngo, cherylngo@gmail.com

ABSTRACT
Introduction To describe the optic disc, visual field and ocular characteristics of a consecutive cohort of Asian patients with chronic primary angle-closure glaucoma (CPACG), and compare them with those having primary open-angle glaucoma (POAG).
Methods In a prospective comparative case series of new patients with POAG or CPACG in Singapore, all patients underwent visual acuity assessment, slit-lamp examination, tonometry, gonioscopy, refraction, Heidelberg Retina Tomograph (HRT) and Humphrey visual field (HVF) assessment.
Results 98 patients were enrolled (POAG n = 48; CPACG n = 50). CPACG patients were significantly older (66.5 ± 9.2 years vs. 64.1 ± 13.5 years; p = 0.027) and mostly female (p = 0.004). CPACG eyes had significantly higher intraocular pressure (26.9 ± 6.9 mmHg vs. 24.5 ± 3.3 mmHg; p = 0.03), shorter axial length (22.89 ± 0.97 mm vs. 24.26 ± 1.79 mm; p < 0.001) and shallower anterior chamber depth (2.60 ± 0.25 mm vs. 3.16 ± 0.48 mm; p < 0.001). HVF mean deviation or pattern standard deviation (PSD) did not differ significantly between POAG and CPACG eyes, but the latter had a lower PSD for a given mean deviation. HRT parameters between the two groups were not significantly different.
Conclusion In this study, CPACG eyes had significantly higher presenting intraocular pressure than POAG eyes, but there were no significant differences in optic disc topography. A majority of the patients in both groups had moderate field defects at the time of presentation, followed by severe and then mild defects. The field loss in CPACG eyes was more diffuse than that in POAG eyes.

Keywords: field of vision, intraocular pressure, optic nerve
Singapore Med J 2013; 54(3): 140-145; doi:10.11622/smedj.2013049

http://smj.org.sg/sites/default/files/5403/5403a2.pdf

REFERENCES

1. Foster PJ, Oen FT, Machin D, et al. The prevalence of glaucoma in Chinese residents of Singapore: a cross-sectional population survey of the Tanjong Pagar district. Arch Ophthalmol 2000; 118:1105-11.
http://dx.doi.org/10.1001/archopht.118.8.1105
 
2. Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 1991; 17:369-74.
http://dx.doi.org/10.1001/jama.1991.03470030069026
 
3. Foster PJ. The epidemiology of primary angle closure and associated glaucomatous optic neuropathy. Semin Ophthalmol 2002; 17:50-8.
http://dx.doi.org/10.1076/soph.17.2.50.14718
 
4. Aung T, Lim MC, Chan YH, Rojanapongpun P, Chew PT. Configuration of the drainage angle, intraocular pressure, and optic disc cupping in subjects with chronic angle-closure glaucoma. Ophthalmology 2005; 112:28-32.
http://dx.doi.org/10.1016/j.ophtha.2004.06.033
 
5. Foulds WS, Phillips CI. Some observations on chronic closed-angle glaucoma. Br J Ophthalmol 1957; 41:208-13.
http://dx.doi.org/10.1136/bjo.41.4.208
 
6. Lau LI, Liu CJ, Chou JC, Hsu WM, Liu JH. Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity. Ophthalmology 2003; 110:1890-4.
http://dx.doi.org/10.1016/S0161-6420(03)00666-3
 
7. Goldberg I. Optic disc and visual field changes in primary open angle glaucoma. Aust J Ophthalmol 1981; 9:223-9.
http://dx.doi.org/10.1111/j.1442-9071.1981.tb01017.x
 
8. Bartz-Schmidt KU, Thumann G, Jonescu-Cuypers CP, Krieglstein GK. Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma. Surv Ophthalmol 1999; 44 suppl 1:S41-53.
http://dx.doi.org/10.1016/S0039-6257(99)00076-4
 
9. Macri A, Rolando M, Corallo G, et al. A comparative study of computerised visual field testing and optic disc morphometric parameters in the follow-up of primary open angle glaucoma. Eye (Lond) 1998; 12:916-20.
http://dx.doi.org/10.1038/eye.1998.238
 
10. Gazzard G, Foster PJ, Viswanathan AC, et al. The severity and spatial distribution of visual field defects in primary glaucoma: a comparison of primary open-angle glaucoma and primary angle-closure glaucoma. Arch Ophthalmol 2002; 120:1636-43.
http://dx.doi.org/10.1001/archopht.120.12.1636
 
11. Foster PJ, Aung T, Nolan WP, et al. Defining "occludable" angles in population surveys: drainage angle width, peripheral anterior synechiae, and glaucomatous optic neuropathy in east Asian people. Br J Ophthalmol 2004; 88:486-90.
http://dx.doi.org/10.1136/bjo.2003.020016
 
12. Saw SM, Gazzard G, Au Eong KG, Oen F, Seah S. Utility values in Singapore Chinese adults with primary open-angle and primary angle-closure glaucoma. J Glaucoma 2005; 14:455-62.
http://dx.doi.org/10.1097/01.ijg.0000185434.08051.82
 
13. Scheie H. Width and pigmentation of the angle of the anterior chamber; a system of grading by gonioscopy. AMA Arch Ophthalmol 1957; 58:510-12.
http://dx.doi.org/10.1001/archopht.1957.00940010526005
 
14. Bowd C, Zangwill LM, Blumenthal EZ, et al. Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender. J Opt Soc Am A Opt Image Sci Vis 2002; 19:197-207.
http://dx.doi.org/10.1364/JOSAA.19.000197
 
15. Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. Ophthalmology 1994; 101:1445-55.
PMid:7741836
 
16. Sihota R. An Indian perspective on primary angle closure and glaucoma. Indian J Ophthalmol 2011; 59 Suppl:S76-81.
http://dx.doi.org/10.4103/0301-4738.73687
 
17. Boland MV, Zhang L, Broman AT, Jampel HD, Quigley HA. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Ophthalmology 2008; 115:239-45.
http://dx.doi.org/10.1016/j.ophtha.2007.03.086
 
18. Thomas R, Muliyil J, Simha RA, Parikh RS. Heidelberg Retinal Tomograph (HRT 2) parameters in primary open angle glaucoma and primary angle closure glaucoma: a comparative study in an Indian population. Ophthalmic Epidemiol 2006; 13:343-50.
http://dx.doi.org/10.1080/09286580600850983
 
19. Shabana N, Aquino MC, See J, et al. Quantitative evaluation of anterior chamber parameters using anterior segment optical coherence tomography in primary angle closure mechanisms. Clin Experiment Ophthalmol 2012; 40:792-80.
http://dx.doi.org/10.1111/j.1442-9071.2012.02805.x
 
20. Friedman DS, Foster PJ, Aung T, He M. Angle closure and angle-closure glaucoma: what we are doing now and what we will be doing in the future. Clin Experiment Ophthalmol 2012; 40:381-7.
http://dx.doi.org/10.1111/j.1442-9071.2012.02774.x
 
21. Amerasinghe N, Aung T. Angle-closure: risk factors, diagnosis and treatment. Prog Brain Res 2008; 173:31-45.
http://dx.doi.org/10.1016/S0079-6123(08)01104-7
 
22. Wang N, Wu H, Fan Z. Primary angle closure glaucoma in Chinese and Western populations. Chin Med J (Engl) 2002; 115:1706-15.
 
23. Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 2000; 44:367-408.
http://dx.doi.org/10.1016/S0039-6257(00)00110-7
 
24. Broman AT, Congdon NG, Bandeen-Roche K, Quigley HA. Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J Glaucoma 2007; 16:581-8.
http://dx.doi.org/10.1097/IJG.0b013e3180640f40
 
25. Ehlers N. On corneal thickness and intraocular pressure. II. A clinical study on the thickness of the corneal stroma in glaucomatous eyes. Acta Ophthalmol (Copenh) 1970; 48:1107-12.
http://dx.doi.org/10.1111/j.1755-3768.1970.tb06591.x
 
26. Iester M, Mete M, Figus M, Frezzotti P. Incorporating corneal pachymetry into the management of glaucoma. J Cataract Refract Surg 2009; 35:1623-8.
http://dx.doi.org/10.1016/j.jcrs.2009.05.015
 
27. Goldmann H, Schmidt T. [Applanation tonometry]. Ophthalmologica 1957; 134:221-42. German.
http://dx.doi.org/10.1159/000303213
 
28. Wong TT, Wong TY, Foster PJ, et al. The relationship of intraocular pressure with age, systolic blood pressure, and central corneal thickness in an asian population. Invest Ophthalmol Vis Sci 2009; 50:4097-102.
http://dx.doi.org/10.1167/iovs.08-2822
 
29. Casson RJ, Baker M, Edussuriya K, et al. Prevalence and determinants of angle closure in central Sri Lanka: the Kandy Eye Study. Ophthalmology 2009; 116:1444-9.
http://dx.doi.org/10.1016/j.ophtha.2009.03.005
 
30. Vijaya L, George R, Arvind H, et al. Prevalence of primary angle-closure disease in an urban south Indian population and comparison with a rural population. The Chennai Glaucoma Study. Ophthalmology 2008; 115:655-60.
http://dx.doi.org/10.1016/j.ophtha.2007.05.034
 
31. Goldberg I. Relationship between intraocular pressure and preservation of visual field in glaucoma. Surv Ophthalmol 2003; 48 suppl 1:S3-7.
http://dx.doi.org/10.1016/S0039-6257(03)00006-7
 
32. Morrison JC, Johnson EC, Cepurna W, Jia L. Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res 2005; 24:217-40.
http://dx.doi.org/10.1016/j.preteyeres.2004.08.003
 
33. Agarwal HC, Gulati V, Sihota R. The normal optic nerve head on Heidelberg Retina Tomograph II. Indian J Ophthalmol 2003; 51:25-33.
PMid:12701859
 
34. Jonas JB, Fernández MC, Naumann GO. Correlation of the optic disc size to glaucoma susceptibility. Ophthalmology 1991; 98:675-80.
PMid:2062501
 
35. Oliveira C, Harizman N, Girkin CA, et al. Axial length and optic disc size in normal eyes. Br J Ophthalmol 2007; 91:37-9.
http://dx.doi.org/10.1136/bjo.2006.102061
 
36. Sihota R, Sony P, Gupta V, Dada T, Singh R. Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle closure glaucoma eyes by optical coherence tomography. Ophthalmic Physiol Opt 2005; 25:408-15.
http://dx.doi.org/10.1111/j.1475-1313.2005.00304.x
 
37. Bonomi L, Marraffa M, Marchini G, Canali N. Perimetric defects after a single acute angle-closure glaucoma attack. Graefes Arch Clin Exp Ophthalmol 1999; 237:908-14.
http://dx.doi.org/10.1007/s004170050385
 
38. Rhee K, Kim YY, Nam DH, Jung HR. Comparison of visual field defects between primary open-angle glaucoma and chronic primary angle-closure glaucoma in the early or moderate stage of the disease. Korean J Ophthalmol 2001; 15:27-31.
PMid:11530818
 
39. Shapiro A, Zauberman H. Diurnal changes of the intraocular pressure of patients with angle-closure glaucoma. Br J Ophthalmol 1979; 63:225-7.
http://dx.doi.org/10.1136/bjo.63.4.225
 
40. Asrani S, Zeimer R, Wilensky J, et al. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma 2000; 9:134-42.
http://dx.doi.org/10.1097/00061198-200004000-00002
 
41. Statistics Singapore. Population in brief: 2009. In: Department of Statistics Singapore [online]. Available at: www.nptd.gov.sg/.../Population%20in%20Brief%202009.pdf. Accessed January 28, 2013.
×

Around the Site

Home

About SMJ

For Reviewers

Sign Up for Alerts

Issues

Current Issue

All Issues

Online First

Supplement

CME

For Authors

Instructions for Authors

Submit Manuscript


Follow us on:
        

More Links

Contact Us

Copyright

Advertise

SMJ Forms

Privacy Policy

SMA Home

Copyright 2021. Singapore Medical Association. All Rights Reserved.